WASP-12b

WASP-12b is an extrasolar planet orbiting the star WASP-12, discovered by the SuperWASP planetary transit survey. Its discovery was announced on April 1, 2008.[1] Due to its extremely close orbit to its star, it has one of the lowest densities for exoplanets ('inflated' by the flux of energy from the star). The planet takes only a little over a day to orbit the star, in contrast to 365 days for the Earth to orbit the Sun. Its distance from the star (approximately 2,115,000 miles) is only 1/44 the Earth's distance from the Sun, with an eccentricity the same as Jupiter's. On 3 December 2013, scientists working with the Hubble Space Telescope (HST) reported detecting water in the atmosphere of the exoplanet.[5][6] In July 2014, NASA announced finding very dry atmospheres on three exoplanets (HD 189733b, HD 209458b, WASP-12b) orbiting sun-like stars.[7]

WASP-12b
Size comparison of WASP-12b (right) with Jupiter
Discovery
Discovered byCameron et al. (SuperWASP)
Discovery siteSAAO
Discovery dateApril 1, 2008[1]
Transit
Orbital characteristics
0.0229 ± 0.0008 AU (3,430,000 ± 120,000 km)
Eccentricity0.049 ± 0.015
1.091423 ± 3e-6 d
Inclination83.1+1.4
1.1
-74+13
10
StarWASP-12
Physical characteristics
Mean radius
1.900+0.057
0.055
,[2] 1.736±0.056[3] RJ
Mass1.39 ± 0.04[1] MJ
Mean density
326 kg/m3 (549 lb/cu yd)
1.16 g
Temperature3128+64
68
[4]

    In September 2017, researchers, working on the HST, announced that WASP-12b absorbs, instead of reflects, at least 94% of the light that shines on its surface. As a result, the exoplanet has been described as "black as asphalt", and as "pitch black"[8] and is a type of planet known as a hot Jupiter.[9]

    Characteristics

    WASP-12b absorbs 94% of the light shining on its surface, resulting in a very low albedo, the amount of light the exoplanet reflects.[10]

    Since hot Jupiter exoplanets are “phase locked” by tidal interactions (that is, the same side always faces the host star, just as the same side of our moon always faces us), there will be a large flow of heat from the highly irradiated “day side” to the cooler “night side”. This is thought to result in very strong winds rushing around the planet's atmosphere.

    Taylor Bell and Nicolas Cowan have pointed out that hydrogen will tend to be ionised on the day-side face. After flowing to the cooler face in a wind, it will then tend to recombine into neutral atoms, and thus will enhance the transport of heat. The planet is so close to WASP-12 that the star's tidal forces are distorting it into an egg shape and pulling away its atmosphere at a rate of about 10−7 MJ (about 189 quadrillion tons) per year.[11] The so-called "tidal heating", and the proximity of the planet to its star, combine to bring the surface temperature to more than 2,500 K (2,200 °C).

    On May 20, 2010, the Hubble Space Telescope spotted WASP-12b being "consumed" by its star. Scientists had been aware that stars could consume planets; however, this was the first time such an event had been observed so clearly. NASA has estimated that the planet has 10 million years left of its life.[12]

    The Hubble Space Telescope observed the planet by using its Cosmic Origins Spectrograph (COS). The observations have confirmed predictions published in Nature in February 2009 by Peking University's Shu-lin Li. The planet's atmosphere has ballooned to be nearly three times the radius of Jupiter, while the planet itself has 40% more mass than Jupiter.

    Orbit

    The study in 2012, utilizing a Rossiter–McLaughlin effect, have determined the planetary orbit is strongly misaligned with the equatorial plane of the star, misalignment equal to 59+15
    20
    °.[13]

    A study from 2019 found that the time interval between two transits has decreased by 29 ± 2 msec/year since the discovery in 2008. The value was updated in 2020 to 32.53±1.62 msec/year, giving WASP-12b an estimated lifetime of 2.90±0.14 million years.[14] The study came to the conclusion that the orbit of WASP-12b is decaying as a result of tidal interactions between the planet and the host star WASP-12. Due to this decay, the orbital period will get shorter and the planet will get closer to the host star, until it will become part of the star. The decay is much faster than the decay of WASP-19b, which does not show a decay with current data.[15][16]

    Carbon content

    Recent evidence indicates that WASP-12b has an enhanced carbon-to-oxygen ratio, significantly higher than that of the Sun, indicating that it is a carbon-rich gas giant. The C/O ratio compatible with observations is about 1, while the solar value is 0.54. The C/O ratios suggest that carbon-rich planets may have formed in the star system.[17] One of the researchers behind that study commented that "with more carbon than oxygen, you would get rocks of pure carbon, such as diamond or graphite".[18]

    The published study states: "Although carbon-rich giant planets like WASP-12b have not been observed, theory predicts myriad compositions for carbon-dominated solid planets. Terrestrial-sized carbon planets, for instance, could be dominated by graphite or diamond interiors, as opposed to the silicate composition of Earth."[17] These remarks have led the media to pick up on the story,[19] some even calling WASP-12b a "diamond planet".[20]

    The carbon content of the planet is located within its atmosphere, in the form of carbon monoxide and methane. The study appears in the journal Nature.[21]

    Candidate satellite

    Russian astronomers studying a curve of change of shine of the planet observed regular variation of light that may arise from plasma torus surrounding at least one exomoon in orbit around WASP-12b.[22] This is not expected, as hot Jupiter-type planets are expected to lose large moons within geologically short timescales.[23] The satellite in question could instead be a Trojan body.[24]

    See also

    References

    1. "WASP Planets". SuperWASP. Retrieved 2016-01-26.
    2. Collins, Karen A; Kielkopf, John F; Stassun, Keivan G (2017). "Transit Timing Variation Measurements of WASP-12b and Qatar-1b: No Evidence for Additional Planets". The Astronomical Journal. 153 (2): 78. arXiv:1512.00464. Bibcode:2017AJ....153...78C. doi:10.3847/1538-3881/153/2/78. S2CID 55191644.
    3. Chan, Tucker; Ingemyr, Mikael; Winn, Joshua N; Holman, Matthew J; Sanchis-Ojeda, Roberto; Esquerdo, Gil; Everett, Mark (2011). "The Transit Light Curve project. XIV. Confirmation of Anomalous Radii for the Exoplanets TrES-4b, HAT-P-3b, and WASP-12b". The Astronomical Journal. 141 (6): 179. arXiv:1103.3078. Bibcode:2011AJ....141..179C. doi:10.1088/0004-6256/141/6/179. S2CID 56378813.
    4. Phase curve and variability analysis of WASP-12b using TESS photometry, 2021, arXiv:2102.00052
    5. Staff (3 December 2013). "Hubble Traces Subtle Signals of Water on Hazy Worlds". NASA. Retrieved 4 December 2013.
    6. Mandell, Avi M.; Haynes, Korey; Sinukoff, Evan; Madhusudhan, Nikku; Burrows, Adam; Deming, Drake (3 December 2013). "Exoplanet Transit Spectroscopy Using WFC3: WASP-12 b, WASP-17 b, and WASP-19 b". Astrophysical Journal. 779 (2): 128. arXiv:1310.2949. Bibcode:2013ApJ...779..128M. doi:10.1088/0004-637X/779/2/128. S2CID 52997396.
    7. Harrington, J.D.; Villard, Ray (July 24, 2014). "RELEASE 14-197 - Hubble Finds Three Surprisingly Dry Exoplanets". NASA. Retrieved July 25, 2014.
    8. Wall, Mike (18 September 2017). "The hellish world WASP-12b is darker than fresh asphalt in visible light, but glows red-hot in infrared". Scientific American. Retrieved 19 September 2017.
    9. Starr, Michelle. "Astronomers Just Found a 'Hot Jupiter' So Dark, It Absorbs Nearly 99% of Light". ScienceAlert.
    10. "Hubble observes pitch black planet". www.spacetelescope.org. Retrieved 15 September 2017.
    11. Li, Shu-lin; Miller, N.; Lin, Douglas N. C. & Fortney, Jonathan J. (2010). "WASP-12b as a prolate, inflated and disrupting planet from tidal dissipation". Nature. 463 (7284): 1054–1056. arXiv:1002.4608. Bibcode:2010Natur.463.1054L. doi:10.1038/nature08715. PMID 20182506. S2CID 4414948.
    12. Hubble Finds a Star Eating a Planet nasa.gov. 2010-05-20. Retrieved on 2010-12-10.
    13. Albrecht, Simon; Winn, Joshua N.; Johnson, John A.; Howard, Andrew W.; Marcy, Geoffrey W.; Butler, R. Paul; Arriagada, Pamela; Crane, Jeffrey D.; Shectman, Stephen A.; Thompson, Ian B.; Hirano, Teruyuki; Bakos, Gaspar; Hartman, Joel D. (2012), "Obliquities of Hot Jupiter host stars: Evidence for tidal interactions and primordial misalignments", The Astrophysical Journal, 757 (1): 18, arXiv:1206.6105, Bibcode:2012ApJ...757...18A, doi:10.1088/0004-637X/757/1/18, S2CID 17174530
    14. Turner, Jake D.; Ridden-Harper, Andrew; Jayawardhana, Ray (2020), Decaying Orbit of the Hot Jupiter WASP-12b: Confirmation with TESS Observations, arXiv:2012.02211
    15. waspplanets (2019-11-26). "The orbit of WASP-12b is decaying". WASP Planets. Retrieved 2020-01-01.
    16. Yee, Samuel W.; Winn, Joshua N.; Knutson, Heather A.; Patra, Kishore C.; Vissapragada, Shreyas; Zhang, Michael M.; Holman, Matthew J.; Shporer, Avi; Wright, Jason T. (2019-11-20). "The Orbit of WASP-12b is Decaying". The Astrophysical Journal. 888: L5. arXiv:1911.09131. doi:10.3847/2041-8213/ab5c16. S2CID 208202070.
    17. Madhusudhan, N.; Harrington, J.; Stevenson, K. B.; Nymeyer, S.; Campo, C. J.; Wheatley, P. J.; Deming, D.; Blecic, J.; Hardy, R. A.; Lust, N. B.; Anderson, D. R.; Collier-Cameron, A.; Britt, C. B. T.; Bowman, W. C.; Hebb, L.; Hellier, C.; Maxted, P. F. L.; Pollacco, D.; West, R. G. (2010). "A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b". Nature. 469 (7328): 64–67. arXiv:1012.1603. Bibcode:2011Natur.469...64M. doi:10.1038/nature09602. PMID 21150901. S2CID 4415171.
    18. "Carbon-Rich Planet: A Girl's Best Friend?". U.S. News & World Report. 10 December 2010.
    19. Lorianna De Giorgio (10 December 2010). "Carbon-rich planet could house diamonds". Toronto Star.
    20. "Diamond planet found by Keele University astronomers". BBC News Online. 9 December 2010.
    21. Intagliata, Christopher (December 9, 2010). "Exoplanet Strikes Carbon Pay Dirt". Scientific American.
    22. Российские астрономы впервые открыли луну возле экзопланеты (in Russian) - "Studying of a curve of change of shine of WASP-12b has brought to the Russian astronomers unusual result: regular splashes were found out.<...> Though stains on a star surface also can cause similar changes of shine, observable splashes are very similar on duration, a profile and amplitude that testifies for benefit of exomoon existence."
    23. Barnes, Jason W.; O'Brien, D. P. (2002). "Stability of Satellites around Close-in Extrasolar Giant Planets". The Astrophysical Journal. 575 (2): 1087–1093. arXiv:astro-ph/0205035. Bibcode:2002ApJ...575.1087B. doi:10.1086/341477. S2CID 14508244.
    24. Kislyakova, K. G.; Pilat-Lohinger, E.; Funk, B.; Lammer, H.; Fossati, L.; Eggl, S.; Schwarz, R.; Boudjada, M. Y.; Erkaev, N. V. (2016), "On the ultraviolet anomalies of the WASP-12 and HD 189733 systems: Trojan satellites as a plasma source", Monthly Notices of the Royal Astronomical Society, 461 (1): 988–999, arXiv:1605.02507, Bibcode:2016MNRAS.461..988K, doi:10.1093/mnras/stw1110, S2CID 119205132

    Media related to WASP-12b at Wikimedia Commons

    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.