Bounded rationality

Bounded rationality is the idea that, when individuals make decisions rationality is limited by: the tractability of the decision problem; the cognitive limitations of the mind; and, the time available to make the decision. Decision-makers, in this view, act as satisficers, seeking a satisfactory rather than an optimal solution. Therefore, humans do not undertake a full cost-benefit analysis to determine the optimal decision, but, rather, choose an option that fulfils their adequacy criteria.[1]

Herbert A. Simon proposed bounded rationality as an alternative basis for the mathematical modeling of decision-making, as used in economics, political science, and related disciplines. It complements "rationality as optimization", which views decision-making as a fully rational process of finding an optimal choice given the information available.[2] Simon used the analogy of a pair of scissors, where one blade represents "cognitive limitations" of actual humans and the other the "structures of the environment", illustrating how minds compensate for limited resources by exploiting known structural regularity in the environment.[2] Many economics models assume that agents are on average rational, and can in large enough quantities be approximated to act according to their preferences in order to maximise utility.[1] With bounded rationality, Simon's goal was "to replace the global rationality of economic man with a kind of rational behavior that is compatible with the access to information and the computational capacities that are actually possessed by organisms, including man, in the kinds of environments in which such organisms exist."[3] In short, the concept of bounded rationality revises notions of "perfect" rationality to account for the fact that perfectly rational decisions are often not feasible in practice because of the intractability of natural decision problems and the finite computational resources available for making them.

The concept of bounded rationality continues to influence (and be debated in) different disciplines, including economics, psychology, law, political science, and cognitive science.[4] Some models of human behavior in the social sciences assume that humans can be reasonably approximated or described as "rational" entities, as in rational choice theory or Downs' Political Agency Model.[5]

Origins

The term was coined by Herbert A. Simon. In Models of Man, Simon argues that most people are only partly rational, and are irrational in the remaining part of their actions. In another work, he states "boundedly rational agents experience limits in formulating and solving complex problems and in processing (receiving, storing, retrieving, transmitting) information".[6] Simon describes a number of dimensions along which "classical" models of rationality can be made somewhat more realistic, while remaining within the vein of fairly rigorous formalization. These include:

  • limiting the types of utility functions
  • recognizing the costs of gathering and processing information
  • the possibility of having a "vector" or "multi-valued" utility function

Simon suggests that economic agents use heuristics to make decisions rather than a strict rigid rule of optimization. They do this because of the complexity of the situation. An example of behaviour inhibited by heuristics can be seen when comparing the strategies in easy situations (e.g Tic-tac-toe) verses the strategies in difficult situations (e.g Chess). Both games, as defined by game theory economics, are finite games with perfect information and therefore equivalent.[7] However, within chess mental capacities and abilities are a binding constraint therefore optimal choices are not a possibility.[7] Thus, in order to test the mental limits of agents, complex problems such as chess should be studied to test how individuals work around their cognitive limits and what behaviours or heuristics are used to form solutions [8]

Model extensions

As decision-makers have to make decisions about how and when to decide, Ariel Rubinstein proposed to model bounded rationality by explicitly specifying decision-making procedures.[9] This puts the study of decision procedures on the research agenda.

Gerd Gigerenzer opines that decision theorists have not really adhered to Simon's original ideas. Rather, they have considered how decisions may be crippled by limitations to rationality, or have modeled how people might cope with their inability to optimize. Gigerenzer proposes and shows that simple heuristics often lead to better decisions than theoretically optimal procedures.[5] Moreover, Gigerenzer states, agents react relative to their environment and use their cognitive processes to adapt accordingly.[1]


Huw Dixon later argues that it may not be necessary to analyze in detail the process of reasoning underlying bounded rationality.[10] If we believe that agents will choose an action that gets them "close" to the optimum, then we can use the notion of epsilon-optimization, which means we choose our actions so that the payoff is within epsilon of the optimum. If we define the optimum (best possible) payoff as , then the set of epsilon-optimizing options S(ε) can be defined as all those options s such that:

.

The notion of strict rationality is then a special case (ε=0). The advantage of this approach is that it avoids having to specify in detail the process of reasoning, but rather simply assumes that whatever the process is, it is good enough to get near to the optimum.

From a computational point of view, decision procedures can be encoded in algorithms and heuristics. Edward Tsang argues that the effective rationality of an agent is determined by its computational intelligence. Everything else being equal, an agent that has better algorithms and heuristics could make "more rational" (more optimal) decisions than one that has poorer heuristics and algorithms.[11] Tshilidzi Marwala and Evan Hurwitz in their study on bounded rationality observed that advances in technology (e.g. computer processing power because of Moore's law, artificial intelligence, and big data analytics) expand the bounds that define the feasible rationality space. Because of this expansion of the bounds of rationality, machine automated decision making makes markets more efficient.[12]

Relationship to Behavioral Economics

Bounded rationality implies the idea that humans take reasoning shortcuts that may lead to sub-optimal decision-making. Behavioral economists engage in mapping the decision shortcuts that agents use in order to help increase the effectiveness of human decision-making. One treatment of this idea comes from Cass Sunstein and Richard Thaler's Nudge.[13][14] Sunstein and Thaler recommend that choice architectures are modified in light of human agents' bounded rationality. A widely cited proposal from Sunstein and Thaler urges that healthier food be placed at sight level in order to increase the likelihood that a person will opt for that choice instead of a less healthy option. Some critics of Nudge have lodged attacks that modifying choice architectures will lead to people becoming worse decision-makers.[15][16]

Relationship to Psychology

The collaborative works of Daniel Kahneman and Amos Tversky expand upon Herbert A. Simon's ideas in the attempt to create a map of bounded rationality. The research attempted to explore the choices made by what was assumed as rational agents compared to the choices made by individuals optimal beliefs and their satisficing behaviour.[17] Kahneman cites that the research contributes mainly to the school of psychology due to imprecision of psychological research to fit the formal economic models, however, the theories are useful to economic theory as a way to expand simple and precise models and cover diverse psychological phenomena.[17] Three major topics covered by the works of Daniel Kahneman and Amos Tversky include Heuristics of judgement, risky choice, and framing effect, which were a culmination of research that fit under what was defined by Herbert A. Simon as the Psychology of Bounded Rationality.[18] In contrast to the work of Simon; Kahneman and Tversky aimed to focus on the effects bounded rationality had on simple tasks which therefore placed more emphasis on errors in cognitive mechanisms irrespective of the situation.[7]

Influence on social network structure

Recent research has shown that bounded rationality of individuals may influence the topology of the social networks that evolve among them. In particular, Kasthurirathna and Piraveenan[19] have shown that in socio-ecological systems, the drive towards improved rationality on average might be an evolutionary reason for the emergence of scale-free properties. They did this by simulating a number of strategic games on an initially random network with distributed bounded rationality, then re-wiring the network so that the network on average converged towards Nash equilibria, despite the bounded rationality of nodes. They observed that this re-wiring process results in scale-free networks. Since scale-free networks are ubiquitous in social systems, the link between bounded rationality distributions and social structure is an important one in explaining social phenomena.

See also

Reference List

  1. Campitelli, Guillermo; Gobet, Fernand (2010). "Herbert Simon's Decision-Making Approach: Investigation of Cognitive Processes in Experts". Review of General Psychology. 14 (4): 354–364. doi:10.1037/a0021256. ISSN 1089-2680. S2CID 6146970.
  2. Gigerenzer, Gerd; Selten, Reinhard (2002). Bounded Rationality: The Adaptive Toolbox. MIT Press. ISBN 978-0-262-57164-7.
  3. Simon, Herbert A. (1955-02-01). "A Behavioral Model of Rational Choice". The Quarterly Journal of Economics. 69 (1): 99–118. doi:10.2307/1884852. ISSN 0033-5533. JSTOR 1884852.
  4. Chater, Nick; Felin, Teppo; Funder, David C.; Gigerenzer, Gerd; Koenderink, Jan J.; Krueger, Joachim I.; Noble, Denis; Nordli, Samuel A.; Oaksford, Mike; Schwartz, Barry; Stanovich, Keith E. (2018-04-01). "Mind, rationality, and cognition: An interdisciplinary debate". Psychonomic Bulletin & Review. 25 (2): 793–826. doi:10.3758/s13423-017-1333-5. ISSN 1531-5320. PMC 5902517. PMID 28744767.
  5. Mancur Olson, Jr. ([1965] 1971). The Logic of Collective Action: Public Goods and the Theory of Groups, 2nd ed. Harvard University Press, Description, Table of Contents, and preview.
  6. Oliver E. Williamson, p. 553, citing Simon.
  7. Bendor, John (2015), "Bounded Rationality", International Encyclopedia of the Social & Behavioral Sciences, Elsevier, pp. 773–776, doi:10.1016/b978-0-08-097086-8.93012-5, ISBN 978-0-08-097087-5, retrieved 2020-11-01
  8. Rosenzweig, M; Porter, L (1990). "Invariants of Human Behaviour". Annual Review of Psychology. 41: 1–19. doi:10.1146/annurev.ps.41.020190.000245. PMID 18331187.
  9. Rubinstein, Ariel (1997). Modeling bounded rationality. MIT Press. ISBN 9780262681001.
  10. Moss; Rae, eds. (1992). "Some Thoughts on Artificial Intelligence and Economic Theory". Artificial Intelligence and Economic Analysis. Edward Elgar. pp. 131–154. ISBN 978-1852786854.
  11. Tsang, E.P.K. (2008). "Computational intelligence determines effective rationality". International Journal of Automation and Computing. 5 (1): 63–6. doi:10.1007/s11633-008-0063-6. S2CID 9769519.
  12. Marwala, Tshilidzi; Hurwitz, Evan (2017). Artificial Intelligence and Economic Theory: Skynet in the Market. London: Springer. ISBN 978-3-319-66104-9.
  13. Thaler, Richard H.; Sunstein, Cass R. (April 8, 2008). Nudge: Improving Decisions about Health, Wealth, and Happiness. Yale University Press. ISBN 978-0-14-311526-7. OCLC 791403664.
  14. Thaler, Richard H.; Sunstein, Cass R.; Balz, John P. (April 2, 2010). "Choice Architecture". Behavioral & Experimental Economics eJournal. doi:10.2139/ssrn.1583509. S2CID 219382170. SSRN 1583509.
  15. Wright, Joshua; Ginsberg, Douglas (February 16, 2012). "Free to Err?: Behavioral Law and Economics and its Implications for Liberty". Library of Law & Liberty.
  16. Sunstein, Cass (2009-05-13). Going to Extremes: How Like Minds Unite and Divide. ISBN 9780199793143.
  17. Kahneman, Daniel (2003). "Maps of Bounded Rationality: Psychology for Behavioral Economics". The American Economic Review. 93 (5): 1449–1475. doi:10.1257/000282803322655392. ISSN 0002-8282. JSTOR 3132137.
  18. Kahneman, Daniel (2003). "A perspective on judgment and choice: Mapping bounded rationality". American Psychologist. 58 (9): 697–720. doi:10.1037/0003-066x.58.9.697. ISSN 1935-990X. PMID 14584987.
  19. Kasthurirathna, Dharshana; Piraveenan, Mahendra (2015-06-11). "Emergence of scale-free characteristics in socio-ecological systems with bounded rationality". Scientific Reports. 5 (1): 10448. doi:10.1038/srep10448. ISSN 2045-2322. PMC 4464151. PMID 26065713.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.