Elongated pentagonal bipyramid

In geometry, the elongated pentagonal bipyramid or pentakis pentagonal prism is one of the Johnson solids (J16). As the name suggests, it can be constructed by elongating a pentagonal bipyramid (J13) by inserting a pentagonal prism between its congruent halves.

Elongated pentagonal bipyramid
TypeJohnson
J15 - J16 - J17
Faces10 triangles
5 squares
Edges25
Vertices12
Vertex configuration10(32.42)
2(35)
Symmetry groupD5h, [5,2], (*522)
Rotation groupD5, [5,2]+, (522)
Dual polyhedronPentagonal bifrustum
Propertiesconvex
Net

A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids, Archimedean solids, prisms, or antiprisms). They were named by Norman Johnson, who first listed these polyhedra in 1966.[1]

Dual polyhedron

The dual of the elongated square bipyramid is a pentagonal bifrustum.

See also


  1. Johnson, Norman W. (1966), "Convex polyhedra with regular faces", Canadian Journal of Mathematics, 18: 169–200, doi:10.4153/cjm-1966-021-8, MR 0185507, Zbl 0132.14603.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.