Sodium-calcium exchanger

The sodium-calcium exchanger (often denoted Na+/Ca2+ exchanger, exchange protein, or NCX) is an antiporter membrane protein that removes calcium from cells. It uses the energy that is stored in the electrochemical gradient of sodium (Na+) by allowing Na+ to flow down its gradient across the plasma membrane in exchange for the countertransport of calcium ions (Ca2+). A single calcium ion is exported for the import of three sodium ions.[1] The exchanger exists in many different cell types and animal species.[2] The NCX is considered one of the most important cellular mechanisms for removing Ca2+.[2]

solute carrier family 8 (sodium/calcium exchanger), member 1
Identifiers
SymbolSLC8A1
Alt. symbolsNCX1
NCBI gene6546
HGNC11068
OMIM182305
RefSeqNM_021097
UniProtP32418
Other data
LocusChr. 2 p23-p21
solute carrier family 8 (sodium-calcium exchanger), member 2
Identifiers
SymbolSLC8A2
NCBI gene6543
HGNC11069
OMIM601901
RefSeqNM_015063
UniProtQ9UPR5
Other data
LocusChr. 19 q13.2
solute carrier family 8 (sodium-calcium exchanger), member 3
Identifiers
SymbolSLC8A3
NCBI gene6547
HGNC11070
OMIM607991
RefSeqNM_033262
UniProtP57103
Other data
LocusChr. 14 q24.1

The exchanger is usually found in the plasma membranes and the mitochondria and endoplasmic reticulum of excitable cells.[3][4]

Function

The sodium–calcium exchanger is only one of the systems by which the cytoplasmic concentration of calcium ions in the cell is kept low. The exchanger does not bind very tightly to Ca2+ (has a low affinity), but it can transport the ions rapidly (has a high capacity), transporting up to five thousand Ca2+ ions per second.[5] Therefore, it requires large concentrations of Ca2+ to be effective, but is useful for ridding the cell of large amounts of Ca2+ in a short time, as is needed in a neuron after an action potential. Thus, the exchanger also likely plays an important role in regaining the cell's normal calcium concentrations after an excitotoxic insult.[3] Such a primary transporter of calcium ions is present in the plasma membrane of most animal cells. Another, more ubiquitous transmembrane pump that exports calcium from the cell is the plasma membrane Ca2+ ATPase (PMCA), which has a much higher affinity but a much lower capacity. Since the PMCA is capable of effectively binding to Ca2+ even when its concentrations are quite low, it is better suited to the task of maintaining the very low concentrations of calcium that are normally within a cell.[6] The Na+/Ca2+ exchanger complements the high affinity, low capacitance Ca2+-ATPase and together, they are involved in a variety of cellular functions including:

The exchanger is also implicated in the cardiac electrical conduction abnormality known as delayed afterdepolarization.[7] It is thought that intracellular accumulation of Ca2+ causes the activation of the Na+/Ca2+ exchanger. The result is a brief influx of a net positive charge (remember 3 Na+ in, 1 Ca2+ out), thereby causing cellular depolarization.[7] This abnormal cellular depolarization can lead to a cardiac arrhythmia.

Reversibility

Since the transport is electrogenic (alters the membrane potential), depolarization of the membrane can reverse the exchanger's direction if the cell is depolarized enough, as may occur in excitotoxicity.[1] In addition, as with other transport proteins, the amount and direction of transport depends on transmembrane substrate gradients.[1] This fact can be protective because increases in intracellular Ca2+ concentration that occur in excitotoxicity may activate the exchanger in the forward direction even in the presence of a lowered extracellular Na+ concentration.[1] However, it also means that, when intracellular levels of Na+ rise beyond a critical point, the NCX begins importing Ca2+.[1][8][9] The NCX may operate in both forward and reverse directions simultaneously in different areas of the cell, depending on the combined effects of Na+ and Ca2+ gradients.[1] This effect may prolong calcium transients following bursts of neuronal activity, thus influencing neuronal information processing.[10][11]

Na+/Ca2+ exchanger in the cardiac action potential

The ability for the Na+/Ca2+ exchanger to reverse direction of flow manifests itself during the cardiac action potential. Due to the delicate role that Ca2+ plays in the contraction of heart muscles, the cellular concentration of Ca2+ is carefully controlled. During the resting potential, the Na+/Ca2+ exchanger takes advantage of the large extracellular Na+ concentration gradient to help pump Ca2+ out of the cell.[12] In fact, the Na+/Ca2+ exchanger is in the Ca2+ efflux position most of the time. However, during the upstroke of the cardiac action potential there is a large influx of Na+ ions. This depolarizes the cell and shifts the membrane potential in the positive direction. What results is a large increase in intracellular [Na+]. This causes the reversal of the Na+/Ca2+ exchanger to pump Na+ ions out of the cell and Ca2+ ions into the cell.[12] However, this reversal of the exchanger lasts only momentarily due to the internal rise in [Ca2+] as a result of the influx of Ca2+ through the L-type calcium channel, and the exchanger returns to its forward direction of flow, pumping Ca2+ out of the cell.[12]

While the exchanger normally works in the Ca2+ efflux position (with the exception of early in the action potential), certain conditions can abnormally switch the exchanger to the reverse (Ca2+ influx, Na+ efflux) position. Listed below are several cellular and pharmaceutical conditions in which this happens.[12]

  • The internal [Na+] is higher than usual (like it is when digitalis glycoside medications block the Na+/K+ -ATPase pump.)
  • The sarcoplasmic reticulum release of Ca2+ is inhibited.
  • Other Ca2+ influx channels are inhibited.
  • If the action potential duration is prolonged.

Structure

Based on secondary structure and hydrophobicity predictions, NCX was initially predicted to have 9 transmembrane helices.[13] The family is believed to have arisen from a gene duplication event, due to apparent pseudo-symmetry within the primary sequence of the transmembrane domain.[14] Inserted between the pseudo-symmetric halves is a cytoplasmic loop containing regulatory domains.[15] These regulatory domains have C2 domain like structures and are responsible for calcium regulation.[16][17] Recently, the structure of an archaeal NCX ortholog has been solved by X-ray crystallography.[18] This clearly illustrates a dimeric transporter of 10 transmembrane helices, with a diamond shaped site for substrate binding. Based on the structure and structural symmetry, a model for alternating access with ion competition at the active site was proposed. The structures of three related proton-calcium exchangers (CAX) have been solved from yeast and bacteria. While structurally and functionally homologus, these structures illustrate novel oligomeric structures, substrate coupling, and regulation.[19][20][21]

History

In 1968, H Reuter and N Seitz published findings that, when Na+ is removed from the medium surrounding a cell, the efflux of Ca2+ is inhibited, and they proposed that there might be a mechanism for exchanging the two ions.[2][22] In 1969, a group led by PF Baker that was experimenting using squid axons published a finding that proposed that there exists a means of Na+ exit from cells other than the sodium-potassium pump.[2][23] Digitalis, more commonly known as foxglove, is known to have a large effect on the Na/K ATPase, ultimately causing a more forceful contraction of the heart. The plant contains compounds that inhibit the sodium potassium pump which lowers the sodium electrochemical gradient. This makes the pumping of calcium out of the cell less efficient, which leads to a more forceful contraction of the heart. For individuals with weak hearts, it is sometimes provided to pump the heart with heavier contractile force. However, it can also cause hypertension because it increases the contractile force of the heart.

See also

References

  1. Yu SP, Choi DW (Jun 1997). "Na(+)-Ca2+ exchange currents in cortical neurons: concomitant forward and reverse operation and effect of glutamate". The European Journal of Neuroscience. 9 (6): 1273–81. doi:10.1111/j.1460-9568.1997.tb01482.x. PMID 9215711. S2CID 23146698.
  2. DiPolo R, Beaugé L (Jan 2006). "Sodium/calcium exchanger: influence of metabolic regulation on ion carrier interactions". Physiological Reviews. 86 (1): 155–203. doi:10.1152/physrev.00018.2005. PMID 16371597.
  3. Kiedrowski L, Brooker G, Costa E, Wroblewski JT (Feb 1994). "Glutamate impairs neuronal calcium extrusion while reducing sodium gradient". Neuron. 12 (2): 295–300. doi:10.1016/0896-6273(94)90272-0. PMID 7906528. S2CID 38199890.
  4. Patterson M, Sneyd J, Friel DD (Jan 2007). "Depolarization-induced calcium responses in sympathetic neurons: relative contributions from Ca2+ entry, extrusion, ER/mitochondrial Ca2+ uptake and release, and Ca2+ buffering". The Journal of General Physiology. 129 (1): 29–56. doi:10.1085/jgp.200609660. PMC 2151609. PMID 17190902.
  5. Carafoli E, Santella L, Branca D, Brini M (Apr 2001). "Generation, control, and processing of cellular calcium signals". Critical Reviews in Biochemistry and Molecular Biology. 36 (2): 107–260. doi:10.1080/20014091074183. PMID 11370791. S2CID 43050133.
  6. Siegel, GJ; Agranoff, BW; Albers, RW; Fisher, SK; Uhler, MD, editors (1999). Basic Neurochemistry: Molecular, Cellular, and Medical Aspects (6th ed.). Philadelphia: Lippincott,Williams & Wilkins. ISBN 0-7817-0104-X.CS1 maint: multiple names: authors list (link)
  7. Lilly, L: "Pathophysiology of Heart Disease", chapter 11: "Mechanisms of Cardiac Arrhythmias", Lippencott, Williams and Wilkens, 2007
  8. Bindokas VP, Miller RJ (Nov 1995). "Excitotoxic degeneration is initiated at non-random sites in cultured rat cerebellar neurons". The Journal of Neuroscience. 15 (11): 6999–7011. doi:10.1523/JNEUROSCI.15-11-06999.1995. PMC 6578035. PMID 7472456. S2CID 25625938.
  9. Wolf JA, Stys PK, Lusardi T, Meaney D, Smith DH (Mar 2001). "Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels". The Journal of Neuroscience. 21 (6): 1923–30. doi:10.1523/JNEUROSCI.21-06-01923.2001. PMC 6762603. PMID 11245677. S2CID 13912728.
  10. Zylbertal, Asaph; Kahan, Anat; Ben-Shaul, Yoram; Yarom, Yosef; Wagner, Shlomo (2015-12-16). "Prolonged Intracellular Na+ Dynamics Govern Electrical Activity in Accessory Olfactory Bulb Mitral Cells". PLOS Biology. 13 (12): e1002319. doi:10.1371/journal.pbio.1002319. ISSN 1545-7885. PMC 4684409. PMID 26674618.
  11. Scheuss, Volker; Yasuda, Ryohei; Sobczyk, Aleksander; Svoboda, Karel (2006-08-02). "Nonlinear [Ca2+] Signaling in Dendrites and Spines Caused by Activity-Dependent Depression of Ca2+ Extrusion". Journal of Neuroscience. 26 (31): 8183–8194. doi:10.1523/JNEUROSCI.1962-06.2006. ISSN 0270-6474. PMC 6673787. PMID 16885232.
  12. Bers DM (Jan 2002). "Cardiac excitation-contraction coupling". Nature. 415 (6868): 198–205. Bibcode:2002Natur.415..198B. doi:10.1038/415198a. PMID 11805843. S2CID 4337201.
  13. Nicoll DA, Ottolia M, Philipson KD (Nov 2002). "Toward a topological model of the NCX1 exchanger". Annals of the New York Academy of Sciences. 976 (1): 11–8. Bibcode:2002NYASA.976...11N. doi:10.1111/j.1749-6632.2002.tb04709.x. PMID 12502529. S2CID 21425718.
  14. Cai X, Lytton J (Sep 2004). "The cation/Ca(2+) exchanger superfamily: phylogenetic analysis and structural implications". Molecular Biology and Evolution. 21 (9): 1692–703. doi:10.1093/molbev/msh177. PMID 15163769.
  15. Matsuoka S, Nicoll DA, Reilly RF, Hilgemann DW, Philipson KD (May 1993). "Initial localization of regulatory regions of the cardiac sarcolemmal Na(+)-Ca2+ exchanger". Proceedings of the National Academy of Sciences of the United States of America. 90 (9): 3870–4. Bibcode:1993PNAS...90.3870M. doi:10.1073/pnas.90.9.3870. PMC 46407. PMID 8483905.
  16. Besserer GM, Ottolia M, Nicoll DA, Chaptal V, Cascio D, Philipson KD, Abramson J (Nov 2007). "The second Ca2+-binding domain of the Na+ Ca2+ exchanger is essential for regulation: crystal structures and mutational analysis". Proceedings of the National Academy of Sciences of the United States of America. 104 (47): 18467–72. Bibcode:2007PNAS..10418467B. doi:10.1073/pnas.0707417104. PMC 2141800. PMID 17962412.
  17. Nicoll DA, Sawaya MR, Kwon S, Cascio D, Philipson KD, Abramson J (Aug 2006). "The crystal structure of the primary Ca2+ sensor of the Na+/Ca2+ exchanger reveals a novel Ca2+ binding motif". The Journal of Biological Chemistry. 281 (31): 21577–81. doi:10.1074/jbc.C600117200. PMID 16774926.
  18. Liao J, Li H, Zeng W, Sauer DB, Belmares R, Jiang Y (Feb 2012). "Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger". Science. 335 (6069): 686–90. Bibcode:2012Sci...335..686L. doi:10.1126/science.1215759. PMID 22323814. S2CID 206538351.
  19. Waight AB, Pedersen BP, Schlessinger A, Bonomi M, Chau BH, Roe-Zurz Z, Risenmay AJ, Sali A, Stroud RM (Jul 2013). "Structural basis for alternating access of a eukaryotic calcium/proton exchanger". Nature. 499 (7456): 107–10. Bibcode:2013Natur.499..107W. doi:10.1038/nature12233. PMC 3702627. PMID 23685453.
  20. Nishizawa T, Kita S, Maturana AD, Furuya N, Hirata K, Kasuya G, Ogasawara S, Dohmae N, Iwamoto T, Ishitani R, Nureki O (Jul 2013). "Structural basis for the counter-transport mechanism of a H+/Ca2+ exchanger". Science. 341 (6142): 168–72. Bibcode:2013Sci...341..168N. doi:10.1126/science.1239002. PMID 23704374. S2CID 206549290.
  21. Wu M, Tong S, Waltersperger S, Diederichs K, Wang M, Zheng L (Jul 2013). "Crystal structure of Ca2+/H+ antiporter protein YfkE reveals the mechanisms of Ca2+ efflux and its pH regulation". Proceedings of the National Academy of Sciences of the United States of America. 110 (28): 11367–72. Bibcode:2013PNAS..11011367W. doi:10.1073/pnas.1302515110. PMC 3710832. PMID 23798403.
  22. Reuter H, Seitz N (Mar 1968). "The dependence of calcium efflux from cardiac muscle on temperature and external ion composition". The Journal of Physiology. 195 (2): 451–70. doi:10.1113/jphysiol.1968.sp008467. PMC 1351672. PMID 5647333.
  23. Baker PF, Blaustein MP, Hodgkin AL, Steinhardt RA (Feb 1969). "The influence of calcium on sodium efflux in squid axons". The Journal of Physiology. 200 (2): 431–58. doi:10.1113/jphysiol.1969.sp008702. PMC 1350476. PMID 5764407.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.