WASP-69

WASP-69 is a K-type main-sequence star. Its surface temperature is 4782±15 K. WASP-69 is slightly enriched in heavy elements compared to the Sun, with a metallicity Fe/H index of 0.10±0.01,[5] and is much younger than the Sun at 2 billion years. The data regarding starspot activity of WASP-69 are inconclusive, but spot coverage of the photosphere may be very high.[6]

WASP-69
Observation data
Epoch J2000      Equinox J2000
Constellation Aquarius
Right ascension 21h 00m 06.1969s[1]
Declination −05° 05 40.0370[1]
Apparent magnitude (V) 9.87±0.03[2]
Characteristics
Evolutionary stage main-sequence star
Spectral type K5V[3]
Astrometry
Radial velocity (Rv)−9.372[4] km/s
Proper motion (μ) RA: 33.778[4] mas/yr
Dec.: −93.581[4] mas/yr
Parallax (π)19.8858 ± 0.0170[4] mas
Distance164.0 ± 0.1 ly
(50.29 ± 0.04 pc)
Details
Mass0.826±0.029[2] M
Radius0.813[2] R
Surface gravity (log g)4.59±0.02[5] cgs
Temperature4782±15[5] K
Metallicity [Fe/H]0.10±0.01[5] dex
Rotation23.07 d[2]
Rotational velocity (v sin i)1.27±0.22[5] km/s
Age2[2] Gyr
Other designations
BD−05 5432, TYC 5200-1560-1, GSC 05200-01560, 2MASS J21000618-0505398[1]
Database references
SIMBADdata

Multiplicity surveys did not detect any stellar companions to WASP-69 as of 2020.[7]

Planetary system

In 2013, one planet, named WASP-69b, was discovered on a tight, circular orbit.[2] Its equilibrium temperature is 886 K,[8] but the measured terminator temperature is significantly higher by at least 200 K.[6]The planet is losing mass at a moderate rate of 0.5 M per billion years, not producing a visible cometary tail.[8]

The planetary atmosphere is extremely hazy and contains a partial cloud deck with cloud tops rising to a pressure of 100 Pa. Its composition is mostly hydrogen and helium, and sodium was also detected in low concentration.[6][9] The sodium may originate from volcanic moons, not from the planet itself.[10]

The WASP-69 planetary system[2]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b 0.260±0.017 MJ 0.04525±0.00053 3.8681382±0.0000017 0 86.71±0.20° 0.945+0.007
0.017
[6] RJ

References

  1. "BD-05 5432". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2021-01-08.
  2. Anderson, D. R.; Collier Cameron, A.; Delrez, L.; Doyle, A. P.; Faedi, F.; Fumel, A.; Gillon, M.; Gómez Maqueo Chew, Y.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Pepe, F.; Pollacco, D.; Queloz, D.; Ségransan, D.; Skillen, I.; Smalley, B.; Smith, A. M. S.; Southworth, J.; Triaud, A. H. M. J.; Turner, O. D.; Udry, S.; West, R. G. (2013), Three sub-Jupiter-mass planets: WASP-69b & WASP-84b transit active K dwarfs and WASP-70Ab transits the evolved primary of a G4+K3 binary, arXiv:1310.5654, doi:10.1093/mnras/stu1737, S2CID 54750890
  3. France, Kevin; Arulanantham, Nicole; Fossati, Luca; Lanza, Antonino F.; Loyd, R. O. Parke; Redfield, Seth; Schneider, P. Christian (2018), "FAR-ULTRAVIOLET ACTIVITY LEVELS OF F, G, K, AND M DWARF EXOPLANET HOST STARS", The Astrophysical Journal Supplement Series, 239 (1): 16, arXiv:1809.07342, Bibcode:2018ApJS..239...16F, doi:10.3847/1538-4365/aae1a3, S2CID 119368148
  4. Brown, A. G. A.; et al. (Gaia collaboration). "Gaia Early Data Release 3: Summary of the contents and survey properties". Astronomy & Astrophysics (in press). arXiv:2012.01533. doi:10.1051/0004-6361/202039657. S2CID 227254300. Gaia EDR3 record for this source at VizieR.
  5. Gill, S.; Maxted, P. F. L.; Smalley, B. (2018), "The atmospheric parameters of FGK stars using wavelet analysis of CORALIE spectra", Astronomy & Astrophysics, 612: A111, arXiv:1801.06106, Bibcode:2018A&A...612A.111G, doi:10.1051/0004-6361/201731954, S2CID 119331772
  6. Murgas, F.; Chen, G.; Nortmann, L.; Pallé, E.; Nowak, G. (2020), "The GTC exoplanet transit spectroscopy survey XI. Possible detection of Rayleigh scattering in the atmosphere of the Saturn-mass planet WASP-69b", Astronomy & Astrophysics, A158: 641, arXiv:2007.02741, Bibcode:2020A&A...641A.158M, doi:10.1051/0004-6361/202038161, S2CID 220363912
  7. Bohn, A. J.; Southworth, J.; Ginski, C.; Kenworthy, M. A.; Maxted, P. F. L.; Evans, D. F. (2020), "A multiplicity study of transiting exoplanet host stars. I. High-contrast imaging with VLT/SPHERE", Astronomy & Astrophysics, 635: A73, arXiv:2001.08224, Bibcode:2020A&A...635A..73B, doi:10.1051/0004-6361/201937127, S2CID 210861118
  8. Wang, Lile; Dai, Fei (2020), Metastable Helium Absorptions with 3D Hydrodynamics and Self-Consistent Photochemistry I:WASP-69b, dimensionality, XUV Flux Level, Spectral Types, and Flares, arXiv:2101.00042
  9. Casasayas-Barris, N.; Palle, E.; Nowak, G.; Yan, F.; Nortmann, L.; Murgas, F. (2017), "Detection of sodium in the atmosphere of WASP-69b", Astronomy & Astrophysics, 608: A135, arXiv:1710.06479, Bibcode:2017A&A...608A.135C, doi:10.1051/0004-6361/201731956, S2CID 67777582
  10. Oza, Apurva V.; Johnson, Robert E.; Lellouch, Emmanuel; Schmidt, Carl; Schneider, Nick; Huang, Chenliang; Gamborino, Diana; Gebek, Andrea; Wyttenbach, Aurelien; Demory, Brice-Olivier; Mordasini, Christoph; Saxena, Prabal; Dubois, David; Moullet, Arielle; Thomas, Nicolas (2019), "Sodium and Potassium Signatures of Volcanic Satellites Orbiting Close-in Gas Giant Exoplanets", The Astrophysical Journal, 885 (2): 168, arXiv:1908.10732, Bibcode:2019ApJ...885..168O, doi:10.3847/1538-4357/ab40cc, S2CID 201651224

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.