Deltoidal icositetrahedron

In geometry, a deltoidal icositetrahedron (also a trapezoidal icositetrahedron, tetragonal icosikaitetrahedron,[1] tetragonal trisoctahedron[2] and strombic icositetrahedron) is a Catalan solid. Its dual polyhedron is the rhombicuboctahedron.

Deltoidal icositetrahedron

(rotating and 3D model)
TypeCatalan
Conway notationoC or deC
Coxeter diagram
Face polygon
kite
Faces24
Edges48
Vertices26 = 6 + 8 + 12
Face configurationV3.4.4.4
Symmetry groupOh, BC3, [4,3], *432
Rotation groupO, [4,3]+, (432)
Dihedral angle138°07′05″
arccos(−7 + 42/17)
Dual polyhedronrhombicuboctahedron
Propertiesconvex, face-transitive

Net
D. i. as artwork and die
D. i. projected onto cube and octahedron in Perspectiva Corporum Regularium
Dyakis dodecahedron crystal model and projection onto an octahedron

Cartesian coordinates

Cartesian coordinates for a suitably sized deltoidal icositetrahedron centered at the origin are:

  • (±1, 0, 0), (0, ±1, 0), (0, 0, ±1)
  • (0, ±1/22, ±1/22), (±1/22, 0, ±1/22), (±1/22, ±1/22, 0)
  • (±(22+1)/7, ±(22+1)/7, ±(22+1)/7)

The long edges of this deltoidal icosahedron have length (2-2) ≈ 0.765367.

Dimensions

The 24 faces are kites.[3] The short and long edges of each kite are in the ratio 1:(2  1/2) ≈ 1:1.292893... If its smallest edges have length a, its surface area and volume are

The kites have three equal acute angles with value and one obtuse angle (between the short edges) with value .

Occurrences in nature and culture

The deltoidal icositetrahedron is a crystal habit often formed by the mineral analcime and occasionally garnet. The shape is often called a trapezohedron in mineral contexts, although in solid geometry that name has another meaning.

Orthogonal projections

The deltoidal icositetrahedron has three symmetry positions, all centered on vertices:

Orthogonal projections
Projective
symmetry
[2] [4] [6]
Image
Dual
image

The solid's projection onto a cube divides its squares into quadrants. The projection onto an octahedron divides its triangles into kite faces. In Conway polyhedron notation this represents an ortho operation to a cube or octahedron.

The solid (dual of the small rhombicuboctahedron) is similar to the disdyakis dodecahedron (dual of the great rhombicuboctahedron).
The main difference is, that the latter also has edges between the vertices on 3- and 4-fold symmetry axes (between yellow and red vertices in the images below).

Deltoidal
icositetrahedron
Disdyakis
dodecahedron
Dyakis
dodecahedron
Tetartoid

Dyakis dodecahedron

A variant with pyritohedral symmetry is called a dyakis dodecahedron[4][5] or diploid.[6] It is common in crystallography.
It can be created by enlarging 24 of the 48 faces of the disdyakis dodecahedron. The tetartoid can be created by enlarging 12 of its 24 faces. [7]

Stellation

The great triakis octahedron is a stellation of the deltoidal icositetrahedron.

The deltoidal icositetrahedron is one of a family of duals to the uniform polyhedra related to the cube and regular octahedron.

When projected onto a sphere (see right), it can be seen that the edges make up the edges of an octahedron and cube arranged in their dual positions. It can also be seen that the threefold corners and the fourfold corners can be made to have the same distance to the center. In that case the resulting icositetrahedron will no longer have a rhombicuboctahedron for a dual, since for the rhombicuboctahedron the centers of its squares and its triangles are at different distances from the center.

This polyhedron is topologically related as a part of sequence of deltoidal polyhedra with face figure (V3.4.n.4), and continues as tilings of the hyperbolic plane. These face-transitive figures have (*n32) reflectional symmetry.

*n42 symmetry mutation of dual expanded tilings: V3.4.n.4
Symmetry
*n32
[n,3]
Spherical Euclid. Compact hyperb. Paraco.
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*32
[,3]
Figure
Config.

V3.4.2.4

V3.4.3.4

V3.4.4.4

V3.4.5.4

V3.4.6.4

V3.4.7.4

V3.4.8.4

V3.4..4

See also

References

  1. Conway, Symmetries of Things, p.284–286
  2. https://etc.usf.edu/clipart/keyword/forms
  3. "Kite". Retrieved 6 October 2019.
  4. Isohedron 24k
  5. The Isometric Crystal System
  6. The 48 Special Crystal Forms
  7. Both is indicated in the two crystal models in the top right corner of this photo. A visual demonstration can be seen here and here.
  • Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X. (Section 3-9)
  • Wenninger, Magnus (1983), Dual Models, Cambridge University Press, doi:10.1017/CBO9780511569371, ISBN 978-0-521-54325-5, MR 0730208 (The thirteen semiregular convex polyhedra and their duals, Page 23, Deltoidal icositetrahedron)
  • The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, page 286, tetragonal icosikaitetrahedron)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.