Orders of magnitude (energy)

This list compares various energies in joules (J), organized by order of magnitude.

Below 1 J

List of orders of magnitude for energy
Factor (joules) SI prefix Value Item
10−34 6.626×10−34 JPhoton energy of a photon with a frequency of 1 hertz.[1]
10−33 2×10−33 JAverage kinetic energy of translational motion of a molecule at the lowest temperature reached, 100 picokelvins as of 1999[2]
10−28   6.6×10−28 J Energy of a typical AM radio photon (1 MHz) (4×10−9 eV)[3]
10−24Yocto- (yJ) 1.6×10−24 J Energy of a typical microwave oven photon (2.45 GHz) (1×10−5 eV)[4][5]
10−23 2×10−23 JAverage kinetic energy of translational motion of a molecule in the Boomerang Nebula, the coldest place known outside of a laboratory, at a temperature of 1 kelvin[6][7]
10−22   2–3000×10−22 J Energy of infrared light photons[8]
10−21 Zepto- (zJ) 1.7×10−21 J 1 kJ/mol, converted to energy per molecule[9]
2.1×10−21 J Thermal energy in each degree of freedom of a molecule at 25 °C (kT/2) (0.01 eV)[10]
2.856×10−21 J By Landauer's principle, the minimum amount of energy required at 25 °C to change one bit of information
3–7×10−21 J Energy of a van der Waals interaction between atoms (0.02–0.04 eV)[11][12]
4.1×10−21 J The "kT" constant at 25 °C, a common rough approximation for the total thermal energy of each molecule in a system (0.03 eV)[13]
7–22×10−21 J Energy of a hydrogen bond (0.04 to 0.13 eV)[11][14]
10−20   4.5×10−20 J Upper bound of the mass-energy of a neutrino in particle physics (0.28 eV)[15][16]
10−19   1.6×10−19 J≈1 electronvolt (eV)[17]
3–5×10−19 JEnergy range of photons in visible light (≈1.6–3.1 eV)[18][19]
3–14×10−19 J Energy of a covalent bond (2–9 eV)[11][20]
5–200×10−19 J Energy of ultraviolet light photons[8]
10−18Atto- (aJ)2.18×10−18 JGround state ionization energy of hydrogen (13.6 eV)
10−17   2–2000×10−17 J Energy range of X-ray photons[8]
10−16   
10−15Femto- (fJ)3 × 10−15 JAverage kinetic energy of one human red blood cell.[21][22][23]
10−14   1×10−14 J Sound energy (vibration) transmitted to the eardrums by listening to a whisper for one second.[24][25][26]
> 2×10−14 J Energy of gamma ray photons[8]
2.7×10−14 JUpper bound of the mass-energy of a muon neutrino[27][28]
8.2×10−14 JRest mass-energy of an electron[29]
10−13 1.6×10−13 J1 megaelectronvolt (MeV)[30]
10−12Pico- (pJ)2.3×10−12 JKinetic energy of neutrons produced by D-T fusion, used to trigger fission (14.1 MeV)[31][32]
10−11   3.4×10−11 JAverage total energy released in the nuclear fission of one uranium-235 atom (215 MeV)[33][34]
10−10   1.5030×10−10 JRest mass-energy of a proton[35]
1.505×10−10 JRest mass-energy of a neutron[36]
1.6×10−10 J1 gigaelectronvolt (GeV)[37]
3×10−10 JRest mass-energy of a deuteron[38]
6×10−10 JRest mass-energy of an alpha particle[39]
7×10−10 JEnergy required to raise a grain of sand by 0.1mm (the thickness of a piece of paper).[40]
10−9 Nano- (nJ) 1.6×10−9 J10 GeV[41]
8×10−9 JInitial operating energy per beam of the CERN Large Electron Positron Collider in 1989 (50 GeV)[42][43]
10−8   1.3×10−8 JMass-energy of a W boson (80.4 GeV)[44][45]
1.5×10−8 JMass-energy of a Z boson (91.2 GeV)[46][47]
1.6×10−8 J100 GeV[48]
2×10−8 JMass-energy of the Higgs Boson (125.1 GeV)[49]
6.4×10−8 JOperating energy per proton of the CERN Super Proton Synchrotron accelerator in 1976[50][51]
10−7   1×10−7 J≡ 1 erg[52]
1.6×10−7 J1 TeV (teraelectronvolt),[53] about the kinetic energy of a flying mosquito[54]
10−6Micro- (µJ)1.04×10−6 JEnergy per proton in the CERN Large Hadron Collider in 2015 (6.5 TeV)[55][56]
10−5   
10−4   
10−3Milli- (mJ)  
10−2Centi- (cJ)  
10−1 Deci- (dJ) 1.1×10−1 JEnergy of an American half-dollar falling 1 metre[57][58]

1 to 105 J

100 J 1 J≡ 1 N·m (newtonmetre)
1 J≡ 1 W·s (watt-second)
1 JKinetic energy produced as an extra small apple (~100 grams[59]) falls 1 meter against Earth's gravity[60]
1 JEnergy required to heat 1 gram of dry, cool air by 1 degree Celsius[61]
1.4 J≈ 1 ft·lbf (foot-pound force)[52]
4.184 J≡ 1 thermochemical calorie (small calorie)[52]
4.1868 J≡ 1 International (Steam) Table calorie[62]
8 JGreisen-Zatsepin-Kuzmin theoretical upper limit for the energy of a cosmic ray coming from a distant source[63][64]
101 Deca- (daJ) 1×101 JFlash energy of a typical pocket camera electronic flash capacitor (100–400 µF @ 330 V)[65][66]
5×101 JThe most energetic cosmic ray ever detected[67] was most likely a single proton traveling only slightly slower than the speed of light.[68]
102 Hecto- (hJ) 3×102 JEnergy of a lethal dose of X-rays[69]
3×102 JKinetic energy of an average person jumping as high as they can[70][71][72]
3.3×102 JEnergy to melt 1 g of ice[73]
> 3.6×102 JKinetic energy of 800 gram[74] standard men's javelin thrown at > 30 m/s[75] by elite javelin throwers[76]
5–20×102 JEnergy output of a typical photography studio strobe light in a single flash[77]
6×102 JKinetic energy of 2 kg[78] standard men's discus thrown at 24.4 m/s by the world record holder Jürgen Schult[79]
6×102 JUse of a 10-watt flashlight for 1 minute
7.5×102 JA power of 1 horsepower applied for 1 second[52]
7.8×102 JKinetic energy of 7.26 kg[80] standard men's shot thrown at 14.7 m/s by the world record holder Randy Barnes[81]
8.01×102 J Amount of work needed to lift a man with an average weight (81.7 kg) one meter above Earth (or any planet with Earth gravity)
103 Kilo- (kJ) 1.1×103 J≈ 1 British thermal unit (BTU), depending on the temperature[52]
1.4×103 JTotal solar radiation received from the Sun by 1 square meter at the altitude of Earth's orbit per second (solar constant)[82]
1.8×103 JKinetic energy of M16 rifle bullet (5.56×45mm NATO M855, 4.1 g fired at 930 m/s)[83]
2.3×103 JEnergy to vaporize 1 g of water into steam[84]
3×103 JLorentz force can crusher pinch[85]
3.4×103 JKinetic energy of world-record men's hammer throw (7.26 kg[86] thrown at 30.7 m/s[87] in 1986)[88]
3.6×103 J≡ 1 W·h (watt-hour)[52]
4.2×103 JEnergy released by explosion of 1 gram of TNT[52][89]
4.2×103 J≈ 1 food Calorie (large calorie)
~7×103 JMuzzle energy of an elephant gun, e.g. firing a .458 Winchester Magnum[90]
9×103 JEnergy in an alkaline AA battery[91]
104   1.7×104 JEnergy released by the metabolism of 1 gram of carbohydrates[92] or protein[93]
3.8×104 JEnergy released by the metabolism of 1 gram of fat[94]
4–5×104 JEnergy released by the combustion of 1 gram of gasoline[95]
5×104 JKinetic energy of 1 gram of matter moving at 10 km/s[96]
105   3×105 – 15×105 JKinetic energy of an automobile at highway speeds (1 to 5 tons[97] at 89 km/h or 55 mph)[98]
5×105 J Kinetic energy of 1 gram of a meteor hitting Earth[99]

106 to 1011 J

106 Mega- (MJ) 1×106 JKinetic energy of a 2 tonne[97] vehicle at 32 metres per second (115 km/h or 72 mph)[100]
1.2×106 JApproximate food energy of a snack such as a Snickers bar (280 food calories)[101]
3.6×106 J= 1 kWh (kilowatt-hour) (used for electricity)[52]
4.2×106 JEnergy released by explosion of 1 kilogram of TNT[52][89]
8.4×106 JRecommended food energy intake per day for a moderately active woman (2000 food calories)[102][103]
107   1×107 J Kinetic energy of the armor-piercing round fired by the assault guns of the ISU-152 tank[104]
1.1×107 JRecommended food energy intake per day for a moderately active man (2600 food calories)[102][105]
3.7×107 J $1 of electricity at a cost of $0.10/kWh (the US average retail cost in 2009)[106][107][108]
4×107 J Energy from the combustion of 1 cubic meter of natural gas[109]
4.2×107 J Caloric energy consumed by Olympian Michael Phelps on a daily basis during Olympic training[110]
6.3×107 J Theoretical minimum energy required to accelerate 1 kg of matter to escape velocity from Earth's surface (ignoring atmosphere)[111]
108   1×108 JKinetic energy of a 55 tonne aircraft at typical landing speed (59 m/s or 115 knots)
1.1×108 J≈ 1 therm, depending on the temperature[52]
1.1×108 J≈ 1 Tour de France, or ~90 hours[112] ridden at 5 W/kg[113] by a 65 kg rider[114]
7.3×108 J≈ Energy from burning 16 kilograms of oil (using 135 kg per barrel of light crude)
109 Giga- (GJ) 1–10×109 JEnergy in an average lightning bolt[115] (thunder)
1.1×109 JMagnetic stored energy in the world's largest toroidal superconducting magnet for the ATLAS experiment at CERN, Geneva[116]
1.2×109 JInflight 100-ton Boeing 757-200 at 300 knots (154 m/s)
1.4×109 JTheoretical minimum amount of energy required to melt a tonne of steel (380 kWh)[117][118]
2×109 JEnergy of an ordinary 61 liter gasoline tank of a car.[95][119][120]
2×109 JThe unit of energy in Planck units[121]
3×109 JInflight 125-ton Boeing 767-200 flying at 373 knots (192 m/s)
3.3×109 JApproximate average amount of energy expended by a human heart muscle over an 80-year lifetime[122][123]
4.2×109 JEnergy released by explosion of 1 ton of TNT.
4.5×109 JAverage annual energy usage of a standard refrigerator[124][125]
6.1×109 J≈ 1 bboe (barrel of oil equivalent)[126]
1010   1.9×1010 JKinetic energy of an Airbus A380 at cruising speed (560 tonnes at 511 knots or 263 m/s)
4.2×1010 J≈ 1 toe (ton of oil equivalent)[126]
4.6×1010 JYield energy of a Massive Ordnance Air Blast bomb, the second most powerful non-nuclear weapon ever designed[127][128]
7.3×1010 JEnergy consumed by the average U.S. automobile in the year 2000[129][130][131]
8.6×1010 J≈ 1 MW·d (megawatt-day), used in the context of power plants[132]
8.8×1010 JTotal energy released in the nuclear fission of one gram of uranium-235[33][34][133]
1011 2.4×1011 JApproximate food energy consumed by an average human in an 80-year lifetime.[134]

1012 to 1017 J

1012 Tera- (TJ) 3.4×1012 J Maximum fuel energy of an Airbus A330-300 (97,530 liters[135] of Jet A-1[136])[137]
3.6×1012 J 1 GW·h (gigawatt-hour)[138]
4×1012 J Electricity generated by one 20-kg CANDU fuel bundle assuming ~29%[139] thermal efficiency of reactor[140][141]
4.2×1012 J Energy released by explosion of 1 kiloton of TNT[52][142]
6.4×1012 JEnergy contained in jet fuel in a Boeing 747-100B aircraft at max fuel capacity (183,380 liters[143] of Jet A-1[136])[144]
1013   1.1×1013 JEnergy of the maximum fuel an Airbus A380 can carry (320,000 liters[145] of Jet A-1[136])[146]
1.2×1013 JOrbital kinetic energy of the International Space Station (417 tonnes[147] at 7.7 km/s[148])[149]
6.3×1013 JYield of the Little Boy atomic bomb dropped on Hiroshima in World War II (15 kilotons)[150][151]
9×1013 JTheoretical total mass-energy of 1 gram of matter[152]
1014   1.8×1014 J Energy released by annihilation of 1 gram of antimatter and matter
3.75×1014 JTotal energy released by the Chelyabinsk meteor.[153]
6×1014 JEnergy released by an average hurricane in 1 second[154]
1015 Peta- (PJ) > 1015 JEnergy released by a severe thunderstorm[155]
1×1015 JYearly electricity consumption in Greenland as of 2008[156][157]
4.2×1015 JEnergy released by explosion of 1 megaton of TNT[52][158]
1016   1×1016 JEstimated impact energy released in forming Meteor Crater
1.1×1016 JYearly electricity consumption in Mongolia as of 2010[156][159]
9×1016 JMass-energy in 1 kilogram of antimatter (or matter)[160]
1017   1×1017 JEnergy released on the Earth's surface by the magnitude 9.1–9.3 2004 Indian Ocean earthquake[161]
1.7×1017 JTotal energy from the Sun that strikes the face of the Earth each second[162]
2.1×1017 JYield of the Tsar Bomba, the largest nuclear weapon ever tested (50 megatons)[163][164]
4.2×1017 JYearly electricity consumption of Norway as of 2008[156][165]
4.5×1017 JApproximate energy needed to accelerate one ton to one-tenth of the speed of light
8×1017 JEstimated energy released by the eruption of the Indonesian volcano, Krakatoa, in 1883[166][167]

1018 to 1023 J

1018 Exa- (EJ) 1.4×1018 JYearly electricity consumption of South Korea as of 2009[156][168]
1019   1.4×1019 JYearly electricity consumption in the U.S. as of 2009[156][169]
1.4×1019JYearly electricity production in the U.S. as of 2009[170][171]
5×1019 JEnergy released in 1 day by an average hurricane in producing rain (400 times greater than the wind energy)[154]
6.4×1019 JYearly electricity consumption of the world as of 2008[172][173]
6.8×1019 JYearly electricity generation of the world as of 2008[172][174]
1020   5×1020 JTotal world annual energy consumption in 2010[175][176]
8×1020 JEstimated global uranium resources for generating electricity 2005[177][178][179][180]
1021 Zetta- (ZJ) 6.9×1021 JEstimated energy contained in the world's natural gas reserves as of 2010[175][181]
7.9×1021 JEstimated energy contained in the world's petroleum reserves as of 2010[175][182]
1022   1.5×1022JTotal energy from the Sun that strikes the face of the Earth each day[162][183]
2.4×1022 JEstimated energy contained in the world's coal reserves as of 2010[175][184]
2.9×1022 JIdentified global uranium-238 resources using fast reactor technology[177]
3.9×1022 JEstimated energy contained in the world's fossil fuel reserves as of 2010[175][185]
4×1022 JEstimated total energy released by the magnitude 9.1–9.3 2004 Indian Ocean earthquake[186]
1023  
2.2×1023 JTotal global uranium-238 resources using fast reactor technology[177]
5×1023 JApproximate energy released in the formation of the Chicxulub Crater in the Yucatán Peninsula[187]

Over 1023 J

1024Yotta- (YJ)5.5×1024 JTotal energy from the Sun that strikes the face of the Earth each year[162][188]
1025 6×1025 JUpper limit of energy released by a solar flare[189]
1026  
3.8×1026 JTotal energy output of the Sun each second[190]
1027 1×1027 JEstimate of the energy released by the impact that created the Caloris basin on Mercury[191]
1028 3.8×1028 JKinetic energy of the Moon in its orbit around the Earth (counting only its velocity relative to the Earth)[192][193]
1029 2.1×1029 JRotational energy of the Earth[194][195][196]
1030 1.8×1030 JGravitational binding energy of Mercury
1031 3.3×1031 JTotal energy output of the Sun each day[190][197]
1032 2×1032 JGravitational binding energy of the Earth[198]
1033 2.7×1033 JEarth's kinetic energy in its orbit[199]
1034 1.2×1034 JTotal energy output of the Sun each year[190][200]
1039 6.6×1039 JTheoretical total mass-energy of the Moon
1041   2.276×1041 JGravitational binding energy of the Sun[201]
5.4×1041 JTheoretical total mass-energy of the Earth[202][203]
1043   5×1043 J Total energy of all gamma rays in a typical gamma-ray burst[204][205]
1044   1–2×1044 JEstimated energy released in a supernova,[206] sometimes referred to as a foe
1.2×1044 JApproximate lifetime energy output of the Sun.
1045   (1.1±0.2)×1045 JBrightest observed hypernova ASASSN-15lh[207]
few times×1045 JBeaming-corrected 'True' total energy (Energy in gamma rays+relativistic kinetic energy) of hyper-energetic gamma-ray burst[208][209][210][211][212]
1046 1×1046 JEstimated energy released in a hypernova[213]
1047   1.8×1047 JTheoretical total mass-energy of the Sun[214][215]
5.4×1047 JMass-energy emitted as gravitational waves during the merger of two black holes, originally about 30 Solar masses each, as observed by LIGO (GW150914)[216]
8.6×1047 JMass-energy emitted as gravitational waves during the largest black hole merger yet observed (GW170729), originally about 42 solar masses each.
8.8×1047 JGRB 080916C – the most powerful Gamma-Ray Burst (GRB) ever recorded – total 'apparent'/isotropic (not corrected for beaming) energy output estimated at 8.8 × 1047 joules (8.8 × 1054 erg), or 4.9 times the sun's mass turned to energy.[217]
1053 6×1053 JTotal mechanical energy or enthalpy in the powerful AGN outburst in the RBS 797[218]
1054 3×1054 JTotal mechanical energy or enthalpy in the powerful AGN outburst in the Hercules A (3C 348)[219]
1055 1055 JTotal mechanical energy or enthalpy in the powerful AGN outburst in the MS 0735.6+7421
1058 4×1058 JVisible mass-energy in our galaxy, the Milky Way[220][221]
1059 1×1059 JTotal mass-energy of our galaxy, the Milky Way, including dark matter and dark energy[222][223]
1062 1–2×1062 JTotal mass-energy of the Virgo Supercluster including dark matter, the Supercluster which contains the Milky Way[224]
10694×1069 JEstimated total mass-energy of the observable universe[225]

SI multiples

SI multiples of joule (J)
Submultiples Multiples
Value SI symbol Name Value SI symbol Name
10−1 J dJ decijoule 101 J daJ decajoule
10−2 J cJ centijoule 102 J hJ hectojoule
10−3 J mJ millijoule 103 J kJ kilojoule
10−6 J µJ microjoule 106 J MJ megajoule
10−9 J nJ nanojoule 109 J GJ gigajoule
10−12 J pJ picojoule 1012 J TJ terajoule
10−15 J fJ femtojoule 1015 J PJ petajoule
10−18 J aJ attojoule 1018 J EJ exajoule
10−21 J zJ zeptojoule 1021 J ZJ zettajoule
10−24 J yJ yoctojoule 1024 J YJ yottajoule

The joule is named after James Prescott Joule. As with every SI unit named for a person, its symbol starts with an upper case letter (J), but when written in full it follows the rules for capitalisation of a common noun; i.e., "joule" becomes capitalised at the beginning of a sentence and in titles, but is otherwise in lower case.

See also

Notes

  1. "Planck's constant | physics | Britannica.com". britannica.com. Retrieved 26 December 2016.
  2. Calculated: KEavg ≈ (3/2) × T × 1.38×1023 = (3/2) × 1×1010 × 1.38×1023 ≈ 2.07×1033 J
  3. Calculated: Ephoton = hν = 6.626×1034 J-s × 1×106 Hz = 6.6×1028 J. In eV: 6.6×1028 J / 1.6×1019 J/eV = 4.1×109 eV.
  4. "Frequency of a Microwave Oven". The Physics Factbook. Retrieved 15 November 2011.
  5. Calculated: Ephoton = hν = 6.626×1034 J-s × 2.45×108 Hz = 1.62×1024 J. In eV: 1.62×1024 J / 1.6×1019 J/eV = 1.0×105 eV.
  6. "Boomerang Nebula boasts the coolest spot in the Universe". JPL. Retrieved 13 November 2011.
  7. Calculated: KEavg ≈ (3/2) × T × 1.38×1023 = (3/2) × 1 × 1.38×1023 ≈ 2.07×1023 J
  8. "Wavelength, Frequency, and Energy". Imagine the Universe. NASA. Retrieved 15 November 2011.
  9. Calculated: 1×103 J / 6.022×1023 entities per mole = 1.7×1021 J per entity
  10. Calculated: 1.381×1023 J/K × 298.15 K / 2 = 2.1×1021 J
  11. "Bond Lengths and Energies". Chem 125 notes. UCLA. Archived from the original on 23 August 2011. Retrieved 13 November 2011.
  12. Calculated: 2 to 4 kJ/mol = 2×103 J / 6.022×1023 molecules/mol = 3.3×1021 J. In eV: 3.3×1021 J / 1.6×1019 J/eV = 0.02 eV. 4×103 J / 6.022×1023 molecules/mol = 6.7×1021 J. In eV: 6.7×1021 J / 1.6×1019 J/eV = 0.04 eV.
  13. Ansari, Anjum. "Basic Physical Scales Relevant to Cells and Molecules". Physics 450. Retrieved 13 November 2011.
  14. Calculated: 4 to 13 kJ/mol. 4 kJ/mol = 4×103 J / 6.022×1023 molecules/mol = 6.7×1021 J. In eV: 6.7×1021 J / 1.6×1019 eV/J = 0.042 eV. 13 kJ/mol = 13×103 J / 6.022×1023 molecules/mol = 2.2×1020 J. In eV: 13×103 J / 6.022×1023 molecules/mol / 1.6×1019 eV/J = 0.13 eV.
  15. Thomas, S.; Abdalla, F.; Lahav, O. (2010). "Upper Bound of 0.28 eV on Neutrino Masses from the Largest Photometric Redshift Survey". Physical Review Letters. 105 (3): 031301. arXiv:0911.5291. Bibcode:2010PhRvL.105c1301T. doi:10.1103/PhysRevLett.105.031301. PMID 20867754. S2CID 23349570.
  16. Calculated: 0.28 eV × 1.6×1019 J/eV = 4.5×1020 J
  17. "CODATA Value: electron volt". NIST. Retrieved 4 November 2011.
  18. "BASIC LAB KNOWLEDGE AND SKILLS". Archived from the original on 15 May 2013. Retrieved 5 November 2011. Visible wavelengths are roughly from 390 nm to 780 nm
  19. Calculated: E = hc/λ. E780 nm = 6.6×1034 kg-m2/s × 3×108 m/s / (780×109 m) = 2.5×1019 J. E_390 _nm = 6.6×1034 kg-m2/s × 3×108 m/s / (390×109 m) = 5.1×1019 J
  20. Calculated: 50 kcal/mol × 4.184 J/calorie / 6.0×1022e23 molecules/mol = 3.47×1019 J. (3.47×1019 J / 1.60×1019 eV/J = 2.2 eV.) and 200 kcal/mol × 4.184 J/calorie / 6.0×1022e23 molecules/mol = 1.389×1018 J. (7.64×1019 J / 1.60×1019 eV/J = 8.68 eV.)
  21. Phillips, Kevin; Jacques, Steven; McCarty, Owen (2012). "How much does a cell weigh?". Physical Review Letters. 109 (11): 118105. Bibcode:2012PhRvL.109k8105P. doi:10.1103/PhysRevLett.109.118105. PMC 3621783. PMID 23005682. Roughly 27 picograms
  22. Bob Berman. "Our Bodies' Velocities, By the Numbers". Retrieved 19 August 2016. The [...] blood [...] flow[s] at an average speed of 3 to 4 mph
  23. Calculated: 1/2 × 27×1012 g × (3.5 miles per hour)2 = 3×1015 J
  24. "Physics of the Body" (PDF). Notre Dame. Retrieved 19 August 2016.. "The eardrum is a [...] membran[e] with an area of 65 mm2."
  25. "Intensity and the Decibel Scale". Physics Classroom. Retrieved 19 August 2016.
  26. Calculated: two eardrums ≈ 1 cm2. 1×106 W/m2 × 1×104 m2 × 1 s = 1×1014 J
  27. Thomas J Bowles (2000). P. Langacker (ed.). Neutrinos in physics and astrophysics: from 10–33 to 1028 cm: TASI 98 : Boulder, Colorado, USA, 1–26 June 1998. World Scientific. p. 354. ISBN 978-981-02-3887-2. Retrieved 11 November 2011. an upper limit ov m_v_u < 170 keV
  28. Calculated: 170×103 eV × 1.6×1019 J/eV = 2.7×1014 J
  29. "electron mass energy equivalent". NIST. Retrieved 4 November 2011.
  30. "Conversion from eV to J". NIST. Retrieved 4 November 2011.
  31. Muller, Richard A. (2002). "The Sun, Hydrogen Bombs, and the physics of fusion". Archived from the original on 2 April 2012. Retrieved 5 November 2011. The neutron comes out with high energy of 14.1 MeV
  32. "Conversion from eV to J". NIST. Retrieved 4 November 2011.
  33. "Energy From Uranium Fission". HyperPhysics. Retrieved 8 November 2011.
  34. "Conversion from eV to J". NIST. Retrieved 4 November 2011.
  35. "proton mass energy equivalent". NIST. Retrieved 4 November 2011.
  36. "neutron mass energy equivalent". NIST. Retrieved 4 November 2011.
  37. "Conversion from eV to J". NIST. Retrieved 4 November 2011.
  38. "deuteron mass energy equivalent". NIST. Retrieved 4 November 2011.
  39. "alpha particle mass energy equivalent". NIST. Retrieved 4 November 2011.
  40. Calculated: 7×104 g × 9.8 m/s2 × 1×104 m
  41. "Conversion from eV to J". NIST. Retrieved 4 November 2011.
  42. Myers, Stephen. "The LEP Collider". CERN. Retrieved 14 November 2011. the LEP machine energy is about 50 GeV per beam
  43. Calculated: 50×109 eV × 1.6×1019 J/eV = 8×109 J
  44. "W". PDG Live. Particle Data Group. Archived from the original on 17 July 2012. Retrieved 4 November 2011.
  45. "Conversion from eV to J". NIST. Retrieved 4 November 2011.
  46. Amsler, C.; Doser, M.; Antonelli, M.; Asner, D.; Babu, K.; Baer, H.; Band, H.; Barnett, R.; Bergren, E.; Beringer, J.; Bernardi, G.; Bertl, W.; Bichsel, H.; Biebel, O.; Bloch, P.; Blucher, E.; Blusk, S.; Cahn, R. N.; Carena, M.; Caso, C.; Ceccucci, A.; Chakraborty, D.; Chen, M. -C.; Chivukula, R. S.; Cowan, G.; Dahl, O.; d'Ambrosio, G.; Damour, T.; De Gouvêa, A.; et al. (2008). "Review of Particle Physics⁎". Physics Letters B. 667 (1): 1–6. Bibcode:2008PhLB..667....1A. doi:10.1016/j.physletb.2008.07.018. Archived from the original on 12 July 2012.
  47. "Conversion from eV to J". NIST. Retrieved 4 November 2011.
  48. "Conversion from eV to J". NIST. Retrieved 4 November 2011.
  49. ATLAS; CMS (26 March 2015). "Combined Measurement of the Higgs Boson Mass in pp Collisions at √s=7 and 8 TeV with the ATLAS and CMS Experiments". Physical Review Letters. 114 (19): 191803. arXiv:1503.07589. Bibcode:2015PhRvL.114s1803A. doi:10.1103/PhysRevLett.114.191803. PMID 26024162.
  50. Adams, John. "400 GeV Proton Synchrotron". Excertp from the CERN Annual Report 1976. CERN. Retrieved 14 November 2011. A circulating proton beam of 400 GeV energy was first achieved in the SPS on 17 June 1976
  51. Calculated: 400×109 eV × 1.6×1019 J/eV = 6.4×108 J
  52. "Appendix B8—Factors for Units Listed Alphabetically". NIST Guide for the Use of the International System of Units (SI). NIST. 2 July 2009. 1.355818
  53. "Conversion from eV to J". NIST. Retrieved 4 November 2011.
  54. "Chocolate bar yardstick". Archived from the original on 26 February 2014. Retrieved 24 January 2014. A TeV is actually a very tiny amount of energy. A popular analogy is to a flying mosquito.
  55. "First successful beam at record energy of 6.5 TeV". Retrieved 28 April 2015.
  56. Calculated: 6.5×1012 eV per beam × 1.6×1019 J/eV = 1.04×106 J
  57. "Coin specifications". United States Mint. Retrieved 2 November 2011. 11.340 g
  58. Calculated: m×g×h = 11.34×103 kg × 9.8 m/s2 × 1 m = 1.1×101 J
  59. "Apples, raw, with skin (NDB No. 09003)". USDA Nutrient Database. USDA. Archived from the original on 3 March 2015. Retrieved 8 December 2011.
  60. Calculated: m×g×h = 1×101 kg × 9.8 m/s2 × 1 m = 1 J
  61. "Specific Heat of Dry Air". Engineering Toolbox. Retrieved 2 November 2011.
  62. "Footnotes". NIST Guide to the SI. NIST. 2 July 2009.
  63. "Physical Motivations". ULTRA Home Page (EUSO project). Dipartimento di Fisica di Torino. Retrieved 12 November 2011.
  64. Calculated: 5×1019 eV × 1.6×1019 J/ev = 8 J
  65. "Notes on the Troubleshooting and Repair of Electronic Flash Units and Strobe Lights and Design Guidelines, Useful Circuits, and Schematics". Retrieved 8 December 2011. The energy storage capacitor for pocket cameras is typically 100 to 400 uF at 330 V (charged to 300 V) with a typical flash energy of 10 W-s.
  66. "Teardown: Digital Camera Canon PowerShot |". electroelvis.com. 2 September 2012. Archived from the original on 1 August 2013. Retrieved 6 June 2013.
  67. "The Fly's Eye (1981–1993)". HiRes. Retrieved 14 November 2011.
  68. Bird, D. J. (March 1995). "Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation". Astrophysical Journal, Part 1. 441 (1): 144–150. arXiv:astro-ph/9410067. Bibcode:1995ApJ...441..144B. doi:10.1086/175344. S2CID 119092012.
  69. "Ionizing Radiation". General Chemistry Topic Review: Nuclear Chemistry. Bodner Research Web. Retrieved 5 November 2011.
  70. "Vertical Jump Test". Topend Sports. Retrieved 12 December 2011. 41–50 cm (males) 31–40 cm (females)
  71. "Mass of an Adult". The Physics Factbook. Retrieved 13 December 2011. 70 kg
  72. Kinetic energy at start of jump = potential energy at high point of jump. Using a mass of 70 kg and a high point of 40 cm => energy = m×g×h = 70 kg × 9.8 m/s2 × 40×102 m = 274 J
  73. "Latent Heat of Melting of some common Materials". Engineering Toolbox. Retrieved 10 June 2013. 334 kJ/kg
  74. "Javelin Throw – Introduction". IAAF. Retrieved 12 December 2011.
  75. Young, Michael. "Developing Event Specific Strength for the Javelin Throw" (PDF). Archived from the original (PDF) on 13 August 2011. Retrieved 13 December 2011. For elite athletes, the velocity of a javelin release has been measured in excess of 30m/s
  76. Calculated: 1/2 × 0.8 kg × (30 m/s)2 = 360 J
  77. Greenspun, Philip. "Studio Photography". Archived from the original on 29 September 2007. Retrieved 13 December 2011. Most serious studio photographers start with about 2000 watts-seconds
  78. "Discus Throw – Introduction". IAAF. Retrieved 12 December 2011.
  79. Calculated: 1/2 × 2 kg × (24.4 m/s)2 = 595.4 J
  80. "Shot Put – Introduction". IAAF. Retrieved 12 December 2011.
  81. Calculated: 1/2 × 7.26 kg × (14.7 m/s)2 = 784 J
  82. Kopp, G.; Lean, J. L. (2011). "A new, lower value of total solar irradiance: Evidence and climate significance". Geophysical Research Letters. 38 (1): n/a. Bibcode:2011GeoRL..38.1706K. doi:10.1029/2010GL045777.
  83. "Intermediate power ammunition for automatic assault rifles". Modern Firearms. World Guns. Archived from the original on 10 August 2013. Retrieved 12 December 2011.
  84. "Fluids – Latent Heat of Evaporation". Engineering Toolbox. Retrieved 10 June 2013. 2257 kJ/kg
  85. powerlabs.org – The PowerLabs Solid State Can Crusher!, 2002
  86. "Hammer Throw – Introduction". IAAF. Retrieved 12 December 2011.
  87. Otto, Ralf M. "HAMMER THROW WR PHOTOSEQUENCE – YURIY SEDYKH" (PDF). Retrieved 4 November 2011. The total release velocity is 30.7 m/sec
  88. Calculated: 1/2 × 7.26 kg × (30.7 m/s)2 = 3420 J
  89. 4.2×109 J/ton of TNT-equivalent × (1 ton/1×106 grams) = 4.2×103 J/gram of TNT-equivalent
  90. ".458 Winchester Magnum" (PDF). Accurate Powder. Western Powders Inc. Archived from the original (PDF) on 28 September 2007. Retrieved 7 September 2010.
  91. "Battery energy storage in various battery sizes". AllAboutBatteries.com. Archived from the original on 4 December 2011. Retrieved 15 December 2011.
  92. "Energy Density of Carbohydrates". The Physics Factbook. Retrieved 5 November 2011.
  93. "Energy Density of Protein". The Physics Factbook. Retrieved 5 November 2011.
  94. "Energy Density of Fats". The Physics Factbook. Retrieved 5 November 2011.
  95. "Energy Density of Gasoline". The Physics Factbook. Retrieved 5 November 2011.
  96. Calculated: E = 1/2 m×v2 = 1/2 × (1×103 kg) × (1×104 m/s)2 = 5×104 J.
  97. "List of Car Weights". LoveToKnow. Retrieved 13 December 2011. 3000 to 12000 pounds
  98. Calculated: Using car weights of 1 ton to 5 tons. E = 1/2 m×v2 = 1/2 × (1×103 kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 3.0×105 J. E = 1/2 × (5×103 kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 15×105 J.
  99. Muller, Richard A. "Kinetic Energy in a meteor". Old Physics 10 notes. Archived from the original on 2 April 2012. Retrieved 13 November 2011.
  100. Calculated: KE = 1/2 × 2×103 kg × (32 m/s)2 = 1.0×106 J
  101. "Candies, MARS SNACKFOOD US, SNICKERS Bar (NDB No. 19155)". USDA Nutrient Database. USDA. Archived from the original on 3 March 2015. Retrieved 14 November 2011.
  102. "How to Balance the Food You Eat and Your Physical Activity and Prevent Obesity". Healthy Weight Basics. National Heart Lung and Blood Institutde. Retrieved 14 November 2011.
  103. Calculated: 2000 food calories = 2.0×106 cal × 4.184 J/cal = 8.4×106 J
  104. Calculated: 1/2 × m × v2 = 1/2 × 48.78 kg × (655 m/s)2 = 1.0×107 J.
  105. Calculated: 2600 food calories = 2.6×106 cal × 4.184 J/cal = 1.1×107 J
  106. "Table 3.3 Consumer Price Estimates for Energy by Source, 1970–2009". Annual Energy Review. US Energy Information Administration. 19 October 2011. Retrieved 17 December 2011. $28.90 per million BTU
  107. Calculated J per dollar: 1 million BTU/$28.90 = 1×106 BTU / 28.90 dollars × 1.055×103 J/BTU = 3.65×107 J/dollar
  108. Calculated cost per kWh: 1 kWh × 3.60×106 J/kWh / 3.65×107 J/dollar = 0.0986 dollar/kWh
  109. "Energy in a Cubic Meter of Natural Gas". The Physics Factbook. Retrieved 15 December 2011.
  110. "The Olympic Diet of Michael Phelps". WebMD. Retrieved 28 December 2011.
  111. Cline, James E. D. "Energy to Space". Retrieved 13 November 2011. 6.27×107 Joules / Kg
  112. "Tour de France Winners, Podium, Times". Bike Race Info. Retrieved 10 December 2011.
  113. "Watts/kg". Flamme Rouge. Archived from the original on 2 January 2012. Retrieved 4 November 2011.
  114. Calculated: 90 hr × 3600 seconds/hr × 5 W/kg × 65 kg = 1.1×108 J
  115. Smith, Chris. "How do Thunderstorms Work?". The Naked Scientists. Retrieved 15 November 2011. It discharges about 1–10 billion joules of energy
  116. "Powering up ATLAS's mega magnet". Spotlight on... CERN. Archived from the original on 30 November 2011. Retrieved 10 December 2011. magnetic energy of 1.1 Gigajoules
  117. "ITP Metal Casting: Melting Efficiency Improvement" (PDF). ITP Metal Casting. U.S. Department of Energy. Retrieved 14 November 2011. 377 kWh/mt
  118. Calculated: 380 kW-h × 3.6×106 J/kW-h = 1.37×109 J
  119. Bell Fuels. "Lead-Free Gasoline Material Safety Data Sheet". NOAA. Archived from the original on 20 August 2002. Retrieved 6 July 2008.
  120. thepartsbin.com – Volvo Fuel Tank: Compare at The Parts Bin, 6 May 2012
  121. "Power of a Human Heart". The Physics Factbook. Retrieved 10 December 2011. The mechanical power of the human heart is ~1.3 watts
  122. Calculated: 1.3 J/s × 80 years × 3.16×107 s/year = 3.3×109 J
  123. "U.S. Household Electricity Uses: A/C, Heating, Appliances". U.S. HOUSEHOLD ELECTRICITY REPORT. EIA. Retrieved 13 December 2011. For refrigerators in 2001, the average UEC was 1,239 kWh
  124. Calculated: 1239 kWh × 3.6×106 J/kWh = 4.5×109 J
  125. Energy Units, by Arthur Smith, 21 January 2005
  126. "Top 10 Biggest Explosions". Listverse. 28 November 2011. Retrieved 10 December 2011. a yield of 11 tons of TNT
  127. Calculated: 11 tons of TNT-equivalent × 4.184×109 J/ton of TNT-equivalent = 4.6×1010 J
  128. "Emission Facts: Average Annual Emissions and Fuel Consumption for Passenger Cars and Light Trucks". EPA. Retrieved 12 December 2011. 581 gallons of gasoline
  129. "200 Mile-Per-Gallon Cars?". Archived from the original on 19 December 2011. Retrieved 12 December 2011. a gallon of gas ... 125 million joules of energy
  130. Calculated: 581 gallons × 125×106 J/gal = 7.26×1010 J
  131. Calculated: 1×106 watts × 86400 seconds/day = 8.6×1010 J
  132. Calculated: 3.44×1010 J/U-235-fission × 1×103 kg / (235 amu per U-235-fission × 1.66×1027 amu/kg) = 8.82×1010 J
  133. Calculated: 2000 kcal/day × 365 days/year × 80 years = 2.4×1011 J
  134. "A330-300 Dimensions & key data". Airbus. Retrieved 12 December 2011. 97530 litres
  135. "Archived copy" (PDF). Archived from the original (PDF) on 8 June 2011. Retrieved 19 August 2011.CS1 maint: archived copy as title (link)
  136. Calculated: 97530 liters × 0.804 kg/L × 43.15 MJ/kg = 3.38×1012 J
  137. Calculated: 1×109 watts × 3600 seconds/hour
  138. Weston, Kenneth. "Chapter 10. Nuclear Power Plants" (PDF). Energy Conversion. Retrieved 13 December 2011. The thermal efficiency of a CANDU plant is only about 29%
  139. "CANDU and Heavy Water Moderated Reactors". Retrieved 12 December 2011. fuel burnup in a CANDU is only 6500 to 7500 MWd per metric ton uranium
  140. Calculated: 7500×106 watt-days/tonne × (0.020 tonnes per bundle) × 86400 seconds/day = 1.3×1013 J of burnup energy. Electricity = burnup × ~29% efficiency = 3.8×1012 J
  141. Calculated: 4.2×109 J/ton of TNT-equivalent × 1×103 tons/megaton = 4.2×1012 J/megaton of TNT-equivalent
  142. "747 Classics Technical Specs". Boeing. Archived from the original on 10 December 2007. Retrieved 12 December 2011. 183,380 L
  143. Calculated: 183380 liters × 0.804 kg/L × 43.15 MJ/kg = 6.36×1012 J
  144. "A380-800 Dimensions & key data". Airbus. Retrieved 12 December 2011. 320,000 L
  145. Calculated: 320,000 l × 0.804 kg/L × 43.15  MJ/kg = 11.1×1012 J
  146. "International Space Station: The ISS to Date". NASA. Retrieved 23 August 2011.
  147. "The wizards of orbits". European Space Agency. Retrieved 10 December 2011. The International Space Station, for example, flies at 7.7 km/s in one of the lowest practicable orbits
  148. Calculated: E = 1/2 m.v2 = 1/2 × 417000 kg × (7700m/s)2 = 1.2×1013 J
  149. "What was the yield of the Hiroshima bomb?". Warbird's Forum. Retrieved 4 November 2011. 21 kt
  150. Calculated: 15 kt = 15×109 grams of TNT-equivalent × 4.2×103 J/gram TNT-equivalent = 6.3×1013 J
  151. "Conversion from kg to J". NIST. Retrieved 4 November 2011.
  152. "JPL – Fireballs and bolides". Jet Propulsion Laboratory. NASA. Retrieved 13 April 2017.
  153. "How much energy does a hurricane release?". FAQ : HURRICANES, TYPHOONS, AND TROPICAL CYCLONES. NOAA. Retrieved 12 November 2011.
  154. "The Gathering Storms". COSMOS. Archived from the original on 4 April 2012. Retrieved 10 December 2011.
  155. "Country Comparison :: Electricity – consumption". The World Factbook. CIA. Archived from the original on 28 January 2012. Retrieved 11 December 2011.
  156. Calculated: 288.6×106 kWh × 3.60×106 J/kWh = 1.04×1015 J
  157. Calculated: 4.2×109 J/ton of TNT-equivalent × 1×106 tons/megaton = 4.2×1015 J/megaton of TNT-equivalent
  158. Calculated: 3.02×109 kWh × 3.60×106 J/kWh = 1.09×1016 J
  159. Calculated: E = mc2 = 1 kg × (2.998×108 m/s)2 = 8.99×1016 J
  160. "USGS Energy and Broadband Solution". National Earthquake Information Center, US Geological Survey. Archived from the original on 4 April 2010. Retrieved 9 December 2011.
  161. The Earth has a cross section of 1.274×1014 square meters and the solar constant is 1361 watts per square meter.
  162. "The Soviet Weapons Program – The Tsar Bomba". The Nuclear Weapon Archive. Retrieved 4 November 2011.
  163. Calculated: 50×106 tons TNT-equivalent × 4.2×109 J/ton TNT-equivalent = 2.1×1017 J
  164. Calculated: 115.6×109 kWh × 3.60×106 J/kWh = 4.16×1017 J
  165. Alexander, R. McNeill (1989). Dynamics of Dinosaurs and Other Extinct Giants. Columbia University Press. p. 144. ISBN 978-0-231-06667-9. the explosion of the island volcano Krakatoa in 1883, had about 200 megatonnes energy.
  166. Calculated: 200×106 tons of TNT equivalent × 4.2×109 J/ton of TNT equivalent = 8.4×1017 J
  167. Calculated: 402×109 kWh × 3.60×106 J/kWh = 1.45×1017 J
  168. Calculated: 3.741×1012 kWh × 3.600×106 J/kWh = 1.347×1019 J
  169. "United States". The World Factbook. USA. Retrieved 11 December 2011.
  170. Calculated: 3.953×1012 kWh × 3.600×106 J/kWh = 1.423×1019 J
  171. "World". The World Factbook. CIA. Retrieved 11 December 2011.
  172. Calculated: 17.8×1012 kWh × 3.60×106 J/kWh = 6.41×1019 J
  173. Calculated: 18.95×1012 kWh × 3.60×106 J/kWh = 6.82×1019 J
  174. "Statistical Review of World Energy 2011" (PDF). BP. Archived from the original (PDF) on 2 September 2011. Retrieved 9 December 2011.
  175. Calculated: 12002.4×106 tonnes of oil equivalent × 42×109 J/tonne of oil equivalent = 5.0×1020 J
  176. "Global Uranium Resources to Meet Projected Demand | International Atomic Energy Agency". iaea.org. June 2006. Retrieved 26 December 2016.
  177. "U.S. Energy Information Administration, International Energy Generation".
  178. "U.S. EIA International Energy Outlook 2007". eia.doe.gov. Retrieved 26 December 2016.
  179. Final number is computed. Energy Outlook 2007 shows 15.9% of world energy is nuclear. IAEA estimates conventional uranium stock, at today's prices is sufficient for 85 years. Convert billion kilowatt-hours to joules then: 6.25×1019×0.159×85 = 8.01×1020.
  180. Calculated: "6608.9 trillion cubic feet" => 6608.9×103 billion cubic feet × 0.025 million tonnes of oil equivalent/billion cubic feet × 1×106 tonnes of oil equivalent/million tonnes of oil equivalent × 42×109 J/tonne of oil equivalent = 6.9×1021 J
  181. Calculated: "188.8 thousand million tonnes" => 188.8×109 tonnes of oil × 42×109 J/tonne of oil = 7.9×1021 J
  182. Calculated: 1.27×1014 m2 × 1370 W/m2 × 86400 s/day = 1.5×1022 J
  183. Calculated: 860938 million tonnes of coal => 860938×106 tonnes of coal × (1/1.5 tonne of oil equivalent / tonne of coal) × 42×109 J/tonne of oil equivalent = 2.4×1022 J
  184. Calculated: natural gas + petroleum + coal = 6.9×1021 J + 7.9×1021 J + 2.4×1022 J = 3.9×1022 J
  185. "USGS, Harvard Moment Tensor Solution". National Earthquake Information Center. 26 December 2004. Archived from the original on 17 January 2010. Retrieved 9 December 2011.
  186. Bralower, Timothy J.; Charles K. Paull; R. Mark Leckie (April 1998). "The Cretaceous–Tertiary boundary cocktail: Chicxulub impact triggers margin collapse and extensive sediment gravity flows" (PDF). Geology. 26 (4): 331–334. Bibcode:1998Geo....26..331B. doi:10.1130/0091-7613(1998)026<0331:tctbcc>2.3.co;2. Archived from the original (PDF) on 28 November 2007. Retrieved 6 June 2013. The kinetic energy derived by the impact is estimated at ~5 × 1030 ergs
  187. Calculated: 1.27×1014 m2 × 1370 W/m2 × 86400 s/day = 5.5×1024 J
  188. Carroll, Bradley; Ostlie, Dale (2017). An Introduction to Modern Astrophysics (2 ed.). ISBN 978-1-108-42216-1.
  189. "Ask Us: Sun: Amount of Energy the Earth Gets from the Sun". Cosmicopia. NASA. Retrieved 4 November 2011.
  190. Lii, Jiangning. "Seismic effects of the Caloris basin impact, Mercury" (PDF). MIT.
  191. "Moon Fact Sheet". NASA. Retrieved 16 December 2011.
  192. Calculated: KE = 1/2 × m × v2. v = 1.023×103 m/s. m = 7.349×1022 kg. KE = 1/2 × (7.349×1022 kg) × (1.023×103 m/s)2 = 3.845×1028 J.
  193. "Moment of Inertia—Earth". Eric Weisstein's World of Physics. Retrieved 5 November 2011.
  194. Allain, Rhett. "Rotational energy of the Earth as an energy source". .dotphysics. Science Blogs. Archived from the original on 17 November 2011. Retrieved 5 November 2011. the Earth takes 23.9345 hours to rotate
  195. Calculated: E_rotational = 1/2 × I × w2 = 1/2 × (8.0×1037 kg m2) × (2×pi/(23.9345 hour period × 3600 seconds/hour))2 = 2.1×1029 J
  196. Calculated: 3.8×1026 J/s × 86400 s/day = 3.3×1031 J
  197. "Earth's Gravitational Binding Energy". Retrieved 19 March 2012. Variable Density Method: the Earth's gravitational binding energy is −1.711×1032 J
  198. "DutchS/pseudosc/flipaxis". uwgb.edu. Archived from the original on 22 August 2017. Retrieved 26 December 2016.
  199. Calculated: 3.8×1026 J/s × 86400 s/day × 365.25 days/year = 1.2×1034 J

  200. Chandrasekhar, S. 1939, An Introduction to the Study of Stellar Structure (Chicago: U. of Chicago; reprinted in New York: Dover), section 9, eqs. 90–92, p. 51 (Dover edition)
    Lang, K. R. 1980, Astrophysical Formulae (Berlin: Springer Verlag), p. 272
  201. "Earth: Facts & Figures". Solar System Exploration. NASA. Retrieved 29 September 2011.
  202. "Conversion from kg to J". NIST. Retrieved 4 November 2011.
  203. Frail, D. A.; Kulkarni, S. R.; Sari, R.; Djorgovski, S. G.; Bloom, J. S.; Galama, T. J.; Reichart, D. E.; Berger, E.; Harrison, F. A.; Price, P. A.; Yost, S. A.; Diercks, A.; Goodrich, R. W.; Chaffee, F. (2001). "Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir". The Astrophysical Journal. 562 (1): L55. arXiv:astro-ph/0102282. Bibcode:2001ApJ...562L..55F. doi:10.1086/338119. S2CID 1047372. "the gamma-ray energy release, corrected for geometry, is narrowly clustered around 5 × 1050 erg"
  204. Calculated: 5×1050 erg × 1×107 J/erg = 5×1043 J
  205. Khokhlov, A.; Mueller, E.; Hoeflich, P.; Mueller; Hoeflich (1993). "Light curves of Type IA supernova models with different explosion mechanisms". Astronomy and Astrophysics. 270 (1–2): 223–248. Bibcode:1993A&A...270..223K.CS1 maint: multiple names: authors list (link)
  206. Dong, S.; Shappee, B. J.; Prieto, J. L.; Jha, S. W.; Stanek, K. Z.; Holoien, T. W.- S.; Kochanek, C. S.; Thompson, T. A.; Morrell, N.; Thompson, I. B.; et al. (15 January 2016). "ASASSN-15lh: A highly super-luminous supernova". Science. 351 (6270): 257–260. arXiv:1507.03010. Bibcode:2016Sci...351..257D. doi:10.1126/science.aac9613. PMID 26816375. S2CID 31444274.
  207. McBreen, S; Krühler, T; Rau, A; Greiner, J; Kann, D. A; Savaglio, S; Afonso, P; Clemens, C; Filgas, R; Klose, S; Küpüc Yoldas, A; Olivares E, F; Rossi, A; Szokoly, G. P; Updike, A; Yoldas, A (2010). "Optical and near-infrared follow-up observations of four Fermi/LAT GRBs: Redshifts, afterglows, energetics and host galaxies". Astronomy and Astrophysics. 516 (71): A71. arXiv:1003.3885. Bibcode:2010A&A...516A..71M. doi:10.1051/0004-6361/200913734. S2CID 119151764.
  208. Cenko, S. B; Frail, D. A; Harrison, F. A; Haislip, J. B; Reichart, D. E; Butler, N. R; Cobb, B. E; Cucchiara, A; Berger, E; Bloom, J. S; Chandra, P; Fox, D. B; Perley, D. A; Prochaska, J. X; Filippenko, A. V; Glazebrook, K; Ivarsen, K. M; Kasliwal, M. M; Kulkarni, S. R; LaCluyze, A. P; Lopez, S; Morgan, A. N; Pettini, M; Rana, V. R (2010). "Afterglow Observations of Fermi-LAT Gamma-Ray Bursts and the Emerging Class of Hyper-Energetic Events". The Astrophysical Journal. 732 (1): 29. arXiv:1004.2900. Bibcode:2011ApJ...732...29C. doi:10.1088/0004-637X/732/1/29. S2CID 50964480.
  209. Cenko, S. B; Frail, D. A; Harrison, F. A; Kulkarni, S. R; Nakar, E; Chandra, P; Butler, N. R; Fox, D. B; Gal-Yam, A; Kasliwal, M. M; Kelemen, J; Moon, D. -S; Price, P. A; Rau, A; Soderberg, A. M; Teplitz, H. I; Werner, M. W; Bock, D. C. -J; Bloom, J. S; Starr, D. A; Filippenko, A. V; Chevalier, R. A; Gehrels, N; Nousek, J. N; Piran, T; Piran, T (2010). "The Collimation and Energetics of the Brightest Swift Gamma-Ray Bursts". The Astrophysical Journal. 711 (2): 641–654. arXiv:0905.0690. Bibcode:2010ApJ...711..641C. doi:10.1088/0004-637X/711/2/641. S2CID 32188849.
  210. url= http://tsvi.phys.huji.ac.il/presentations/Frail_AstroExtreme.pdf Archived 1 August 2014 at the Wayback Machine
  211. url= http://fermi.gsfc.nasa.gov/science/mtgs/grb2010/tue/Dale_Frail.ppt
  212. "A Hypernova: The Super-charged Supernova and its link to Gamma-Ray Bursts". Imagine the Universe!. NASA. Retrieved 9 December 2011. With a power about 100 times that of the already astonishingly powerful "typical" supernova
  213. "Sun Fact Sheet". NASA. Retrieved 15 October 2011.
  214. "Conversion from kg to J". NIST. Retrieved 4 November 2011.
  215. Abbott, B.; et al. (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters. 116 (6): 061102. arXiv:1602.03837. Bibcode:2016PhRvL.116f1102A. doi:10.1103/PhysRevLett.116.061102. PMID 26918975. S2CID 124959784.
  216. "Fermi's record breaking gamma-ray burst".
  217. Cavagnolo, K. W; McNamara, B. R; Wise, M. W; Nulsen, P. E. J; Brüggen, M; Gitti, M; Rafferty, D. A (2011). "A Powerful AGN Outburst in RBS 797". The Astrophysical Journal. 732 (2): 71. arXiv:1103.0630. Bibcode:2011ApJ...732...71C. doi:10.1088/0004-637X/732/2/71. S2CID 73653317.
  218. url= http://iopscience.iop.org/1538-4357/625/1/L9/fulltext/19121.text.html
  219. Jim Brau. "The Milky Way Galaxy". Retrieved 4 November 2011.
  220. "Conversion from kg to J". NIST. Retrieved 4 November 2011.
  221. Karachentsev, I. D.; Kashibadze, O. G. (2006). "Masses of the local group and of the M81 group estimated from distortions in the local velocity field". Astrophysics. 49 (1): 3–18. Bibcode:2006Ap.....49....3K. doi:10.1007/s10511-006-0002-6. S2CID 120973010.
  222. "Conversion from kg to J". NIST. Retrieved 4 November 2011.
  223. Einasto, M.; et al. (December 2007). "The richest superclusters. I. Morphology". Astronomy and Astrophysics. 476 (2): 697–711. arXiv:0706.1122. Bibcode:2007A&A...476..697E. doi:10.1051/0004-6361:20078037. S2CID 15004251.
  224. "Big Bang Energy". Archived from the original on 19 August 2014. Retrieved 26 December 2016.CS1 maint: bot: original URL status unknown (link)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.