List of most massive stars

This is a list of the most massive stars so far discovered, in solar masses (M).

Uncertainties and caveats

Most of the masses listed below are contested and, being the subject of current research, remain under review and subject to constant revision of their masses and other characteristics. Indeed, many of the masses listed in the table below are inferred from theory, using difficult measurements of the stars' temperatures and absolute brightnesses. All the masses listed below are uncertain: both the theory and the measurements are pushing the limits of current knowledge and technology. Either measurement or theory, or both, could be incorrect. For example, VV Cephei could be between 25–40 M, or 100 M, depending on which property of the star is examined.

Artist's impression of disc of obscuring material around a massive star.

Massive stars are rare; astronomers must look very far from the Earth to find one. All the listed stars are many thousands of light years away and that alone makes measurements difficult.

In addition to being far away, many stars of such extreme mass are surrounded by clouds of outflowing gas created by extremely powerful stellar winds; the surrounding gas interferes with the already difficult-to-obtain measurements of stellar temperatures and brightnesses and greatly complicates the issue of estimating internal chemical compositions and structures.[lower-alpha 1] This obstruction leads to difficulties in calculating parameters.

Eta Carinae is the bright spot hidden in the double-lobed dust cloud. It is the most massive star that has a Bayer designation. It was only discovered to be (at least) two stars in the past few decades.

Both the obscuring clouds and the great distances make it difficult to judge whether the star is just a single supermassive object or, instead, a multiple star system. A number of the "stars" listed below may actually be two or more companions orbiting too closely to distinguish by our telescopes, each star being massive in itself but not necessarily “supermassive” to either be on this list, or near the top of it. Other combinations are possible – for example a supermassive star with one or more smaller companions or more than one giant star – but without being able to see inside the surrounding cloud, it is difficult to know the truth of the matter. More globally, statistics on stellar populations seem to indicate that the upper mass limit is in the 100–200 solar mass range.[1]

Rare reliable estimates

Eclipsing binary stars are the only stars whose masses are estimated with some confidence. However note that almost all of the masses listed in the table below were inferred by indirect methods; only a few of the masses in the table were determined using eclipsing systems.

WR 25 is a binary star, whose orbit around its obscured companion provided a constraint on its mass.

Amongst the most reliable listed masses are those for the eclipsing binaries NGC 3603-A1, WR 21a, and WR 20a. Masses for all three were obtained from orbital measurements.[lower-alpha 2] This involves measuring their radial velocities and also their light curves. The radial velocities only yield minimum values for the masses, depending on inclination, but light curves of eclipsing binaries provide the missing information: inclination of the orbit to our line of sight.

Relevance of stellar evolution

Some stars may once have been heavier than they are today. It is likely that many have suffered significant mass loss, perhaps as much as several tens of solar masses, expelled by the process of superwind, where high velocity winds are driven by the hot photosphere into interstellar space. This process is similar to superwinds generated by asymptotic giant branch (AGB) stars in form red giants or planetary nebulae. The process forms an enlarged extended envelope around the star that interacts with the nearby interstellar medium and infusing the region with elements heavier than Hydrogen or Helium.

There are also – or rather were – stars that might have appeared on the list but no longer exist as stars, or are supernova impostors; today we see only the debris.[lower-alpha 3] The masses of the precursor stars that fueled these cataclysms can be estimated from the type of explosion and the energy released, but those masses are not listed here (see § Black holes below).

Mass limits

There are two related theoretical limits on how massive a star can possibly be: the accretion limit and the Eddington mass limit. The accretion limit is related to star formation: After about 120 M have accreted in a protostar, the combined mass should have become hot enough for its heat to drive away any further incoming matter. In effect, the protostar reaches a point where it evaporates away material as fast as it collects new material. The Eddington limit is based on light pressure from the core of an already-formed star: As mass increases past ~150 M, the intensity of light radiated from a Population I star's core will become sufficient for the light-pressure pushing outward to exceed the gravitational force pulling inward, and the surface material of the star will be free to float away into space.

Accretion limits

Astronomers have long hypothesized that as a protostar grows to a size beyond 120 M, something drastic must happen. Although the limit can be stretched for very early Population III stars, and although the exact value is uncertain, if any stars still exist above 150–200 M they would challenge current theories of stellar evolution.

Studying the Arches Cluster, which is currently the densest known cluster of stars in our galaxy, astronomers have confirmed that stars in that cluster do not occur any larger than about 150 M.

The R136 cluster is an unusually dense collection of young, hot, blue stars.

Rare ultramassive stars that exceed this limit – for example in the R136 star cluster – might be explained by the following proposal: Some of the pairs of massive stars in close orbit in young, unstable multiple-star systems must occasionally collide and merge where certain unusual circumstances hold that make a collision possible.[2]

Eddington mass limit

A limit on stellar mass arises because of light-pressure: For a sufficiently massive star the outward pressure of radiant energy generated by nuclear fusion in the star's core exceeds the inward pull of its own gravity. The lowest mass for which this effect is active is the Eddington limit.

Stars of greater mass have a higher rate of core energy generation, and heavier stars' luminosities increase far out of proportion to the increase in their masses. The Eddington limit is the point beyond which a star ought to push itself apart, or at least shed enough mass to reduce its internal energy generation to a lower, maintainable rate. The actual limit-point mass depends on how opaque the gas in the star is, and metal-rich Population I stars have lower mass limits than metal-poor Population II stars, with the hypothetical metal-free Population III stars having the highest allowed mass, somewhere around 300 M.

In theory, a more massive star could not hold itself together because of the mass loss resulting from the outflow of stellar material. In practice the theoretical Eddington Limit must be modified for high luminosity stars and the empirical Humphreys–Davidson limit is used instead.[3]

List of the most massive stars

The following two lists show a few of the known stars with an estimated mass of 25 M or greater, including the stars in open cluster, OB association and H II reigon.

The first list gives stars that are estimated to be 100 M or larger. The majority of stars thought to be more than 100 M are shown, but the list is incomplete.

The second list gives examples of stars 25–100 M, but is far from a complete list. Note that all O-type stars have masses greater than 15 M and catalogs of such stars (GOSS, Reed) list hundreds of cases.

In each list, the method used to determine the mass is included to give an idea of uncertainty: Binary stars being more securely determined than indirect methods such as conversion from luminosity, extrapolation from stellar atmosphere models, ... . The masses listed below are the stars’ current (evolved) mass, not their initial (formation) mass.

Legend
Wolf–Rayet star
Luminous blue variable star
O-type star
B-type star
Stars 100 M or greater
Star name Mass
(M, Sun = 1)
Distance from Earth (ly) Method used to estimate mass Refs.
BAT99-98 (in Tarantula Nebula of LMC) 226 165,000 Luminosity/atmosphere model [4]
R136a1 (in Tarantula Nebula of LMC) 215 163,000 Evolutionary model [5]
R136a7 (in Tarantula Nebula of LMC) 199 163,000 Luminosity/atmosphere model [5]
Melnick 42 (in Tarantula Nebula of LMC) 189 163,000 Luminosity/atmosphere model [6]
R136a2 (in Tarantula Nebula of LMC) 187 163,000 Evolutionary model [5]
VFTS 1022 (in Tarantula Nebula of LMC) 178 164,000 Luminosity/atmosphere model [6]
R136a5 (in Tarantula Nebula of LMC) 171 157,000 Luminosity/atmosphere model [5]
R136a4 (in Tarantula Nebula of LMC) 167 157,000 Luminosity/atmosphere model [5]
HSH95-46 (in Tarantula Nebula of LMC) 160 163,000 Luminosity/atmosphere model [5]
R136a3 (in Tarantula Nebula of LMC) 154 163,000 Evolutionary model [5]
VFTS 682 (in Tarantula Nebula of LMC) 153 164,000 Luminosity/atmosphere model [7]
HD 15558 A (in IC 1805 of Heart Nebula) 152 24,400 Binary [8]
HSH95-36 (in Tarantula Nebula of LMC) 149 163,000 Luminosity/atmosphere model [5]
Melnick 34 A (in Tarantula Nebula of LMC) 147 163,000 Luminosity/atmosphere model [9]
VFTS 482 (in Tarantula Nebula of LMC) 145 164,000 Luminosity/atmosphere model [6]
R136c (in Tarantula Nebula of LMC) 142 163,000 Evolutionary model [10]
VFTS 1021 (in Tarantula Nebula of LMC) 141 164,000 Luminosity/atmosphere model [6]
HD 268721 A (in N11 of LMC) 140 160,000 Luminosity/atmosphere model [11][lower-alpha 4]
VFTS 506 (in Tarantula Nebula of LMC) 138 164,000 Luminosity/atmosphere model [7]
Melnick 34 B (in Tarantula Nebula of LMC) 136 163,000 Luminosity/atmosphere model [9]
VFTS 545 (in Tarantula Nebula of LMC) 133 164,000 Luminosity/atmosphere model [6]
HD 97950 B (WR 43b in HD 97950 of NGC 3603) 132 24,700 Luminosity/atmosphere model [12]
HD 269810 (in NGC 2032 of LMC) 130 163,000 Luminosity/atmosphere model [13]
WR 42e (in HD 97950 of NGC 3603) 123 25,000 Ejection in triple system [14][lower-alpha 5]
R136a6 (in Tarantula Nebula of LMC) 121 157,000 Luminosity/atmosphere model [5]
HD 97950 A1a (WR 43a A in HD 97950 of NGC 3603) 120 24,700 Binary [12]
R136b (in Tarantula Nebula of LMC) 120 163,000 Luminosity/atmosphere model [5]
LSS 4067 (in HM 1) 120 11,000 Evolutionary model [15]
WR 93 (in Pismis 24 of NGC 6357) 120 5,900 Evolutionary model [15]
MSP 183 (in Westerlund 2) 115 20,000 Luminosity/atmosphere model [16]
WR 24 (in Collinder 228 of Carina Nebula) 114 14,000 Evolutionary model [17]
HD 97950 C1 (WR 43c A in HD 97950 of NGC 3603) 113 22,500 Luminosity/atmosphere model [12][lower-alpha 4]
WR 102ae (in Arches Cluster) 111.3 25,000 Luminosity/atmosphere model [18]
Cygnus OB2 #12 A (in Cygnus OB2) 110 5,200 Luminosity/atmosphere model [19][lower-alpha 4]
HD 93129 Aa (in Trumpler 14 of Carina Nebula) 110 7,500 Luminosity/atmosphere model [20]
R146 (in Tarantula Nebula of LMC) 109 164,000 Luminosity/atmosphere model [4]
VFTS 621 (in Tarantula Nebula of LMC) 107 164,000 Luminosity/atmosphere model [6]
WR 21a A (Runaway star from Westerlund 2) 103.6 26,100 Binary [21]
R99 (in N41 of LMC) 103 164,000 Luminosity/atmosphere model [4]
HSH95-47 (in Tarantula Nebula of LMC) 102 163,000 Luminosity/atmosphere model [5]
WR 102ah (in Arches Cluster) 101 25,000 Luminosity/atmosphere model [18]
WR 102ad (in Arches Cluster) 100.9 25,000 Luminosity/atmosphere model [18]
VFTS 457 (in Tarantula Nebula of LMC) 100 164,000 Luminosity/atmosphere model [6]
Peony Star (WR 102ka near Galactic Center) 100 26,000 Luminosity/atmosphere model [22]
η Carinae A (in Trumpler 16 of Carina Nebula) 100 7,500 Luminosity/Binary [23]

A few examples of mass less than 100 M.

Some stars with masses 25–100 M
Star name Mass
(M, Sun = 1)
Distance from Earth (ly) Refs.
WR 25 A (in Trumpler 16 of Carina Nebula) 98 6,500 [17][lower-alpha 4]
R136a8 (in Tarantula Nebula of LMC) 96 157,000 [24]
HD 38282 B (in Tarantula Nebula of LMC) 95 163,000 [25]
HM 1-6 (in HM 1) 95 11,000 [15]
HD 303308 (in Trumpler 16 of Carina Nebula) 93 9,200 [15]
HD 97950 A1b (WR 43a B in HD 97950 of NGC 3603) 92 24,800 [12]
WR 89 (in HM 1) 87 11,000 [17]
WR 102aj (in Arches Cluster) 86.3 25,000 [18]
BI 253 (Runaway star from Tarantula Nebula of LMC) 84 164,000 [6]
HD 93250 A (in Trumpler 16 of Carina Nebula) 83.3 7,500 [26][lower-alpha 4]
WR 20a A (in Westerlund 2) 82.7 20,000 [27]
WR 20a B (in Westerlund 2) 81.9 20,000 [27]
Trumpler 27-27 (in Trumpler 27) 81 3,900 [15]
HD 38282 A (in Tarantula Nebula of LMC) 80 163,000 [25]
Arches-F15 (in Arches Cluster) 79.7 25,000 [18]
Pismis 24-17 (in Pismis 24 of NGC 6357) 78 5,900 [28]
HD 93632 (in Collinder 228 of Carina Nebula) 76 10,000 [15]
WR 22 A (in Bochum 10 of Carina Nebula) 75 8,300 [17][lower-alpha 6]
HD 93128 (in Trumpler 14 of Carina Nebula) 75 8,000 [15]
Pismis 24-1NE (in Pismis 24 of NGC 6357) 74 6,500 [28]
WR 102af (in Arches Cluster) 70 25,000 [18]
HD 37974 (in N135 of LMC) 70 163,000 [29][lower-alpha 7]
HD 93129 Ab (in Trumpler 14 of Carina Nebula) 70 7,500 [20]
M33 X-7 B (in Triangulum Galaxy) 70 2,700,000 [30]
HD 229059 (in Berkeley 87) 69 3,000 [15]
HD 93403 A (in Trumpler 16 of Carina Nebula) 68.5 10,400 [31]
HM 1-8 (in HM 1) 68 11,000 [15]
V661 Carinae (in Collinder 228 of Carina Nebula) 68 10,000 [15]
Arches-F18 (in Arches Cluster) 66.9 25,000 [18]
WR 102al (in Arches Cluster) 66.4 25,000 [18]
HD 5980 B (in NGC 346 of SMC) 66 200,000 [32]
Pismis 24-1SW (in Pismis 24 of NGC 6357) 66 6,500 [28]
BD+43° 3654 (Runaway star from Cygnus OB2) 64.6 5,400 [33]
Trumpler 27-23 (in Trumpler 27) 64 3,900 [15]
HD 93160 (in Trumpler 14 of Carina Nebula) 62 8,000 [15]
V2245 Cygni (in Cygnus OB9) 61.6 5,000 [33]
WR 102hb (in Quintuplet cluster) 61 26,000 [34]
HD 5980 A (in NGC 346 of SMC) 61 200,000 [32]
AB8 B (in NGC 602 of SMC) 61 197,000 [32]
Var 83 (in Triangulum Galaxy) 60 3,000,000 [35]
WR 87 (in HM 1) 59 11,000 [17]
HD 93204 (in Trumpler 16 of Carina Nebula) 59 9,200 [15]
WR 21a B (Runaway star from Westerlund 2) 58.3 26,000 [21]
WR 102ea (in Quintuplet cluster) 58 26,000 [34]
HD 305525 (in Collinder 228 of Carina Nebula) 58 10,000 [15]
CD Crucis B (in Hogg 15) 57 14,000 [36]
V1827 Cygni (in Cygnus OB2) 57 5,100 [33]
Arches-F28 (in Arches Cluster) 56.8 25,000 [18]
ζ Puppis (Naos in Vela R2 of Vela Molecular Ridge) 56.1 1,080 [37][lower-alpha 8]
Arches-F21 (in Arches Cluster) 56 25,000 [18]
Plaskett's Star B (in Monoceros OB2) 56 5,250 [38]
WR 102ab (in Arches Cluster) 55.3 25,000 [18]
9 Sagittarii A (in NGC 6530 of Lagoon Nebula) 55 5,800 [39]
BD+40° 4210 (in Cygnus OB2) 54.1 5,000 [33]
WR 102ba (in Arches Cluster) 54 25,000 [18]
Plaskett's Star A (in Monoceros OB2) 54 5,250 [38]
R145 B (in Tarantula Nebula of LMC) 54 163,000 [40]
R145 A (in Tarantula Nebula of LMC) 53 163,000 [40]
WR 102bb (in Arches Cluster) 52.4 25,000 [18]
HD 93129 B (in Trumpler 14 of Carina Nebula) 52 7,500 [41]
Cygnus OB2-516 (in Cygnus OB2) 51.6 5,100 [42]
λ Cephei (Runaway star from Cepheus OB3) 51.4 3,100 [37]
WR 147S (in Cygnus OB2) 51 2,100 [17]
HD 303311 (in Trumpler 14 of Carina Nebula) 51 8,000 [15]
GCIRS 16SW A (WR101k A in Galactic Center) 50 26,000 [43]
GCIRS 16SW B (WR101k B in Galactic Center) 50 26,000 [43]
CX Circinus (in Pismis 20) 50 10,000 [15]
HM 1-12 (in HM 1) 50 11,000 [15]
WR 102bc (in Arches Cluster) 50 25,000 [18]
CD Crucis A (in Hogg 15) 48 14,000 [36]
LH54-425 A (in LH 54 of LMC) 47 165,000 [44][lower-alpha 9]
V4650 Sagittarii (in Quintuplet cluster) 46 26,000 [45]
HD 15558 B (in IC 1805 of Heart Nebula) 46 7,500 [8]
WR 102ak (in Arches Cluster) 45.9 25,000 [18]
WR 102c (in Sickle Nebula of Galactic Center) 45 26,000 [46][lower-alpha 10]
GCIRS 8* (in Galactic Center) 44.5 26,000 [47]
WR 102df (in Quintuplet cluster) 44 25,000 [34]
WR 148 A (Runaway star from Galactic plane) 44 27,000 [17]
AB7 B (in NGC 371 of SMC) 44 197,000 [32]
WR 102ag (in Arches Cluster) 43.3 25,000 [18]
WR 102i (in Quintuplet cluster) 43 26,000 [34]
WR 102aa (in Arches Cluster) 41.6 25,000 [18]
HD 93205 A (in Trumpler 16 of Carina Nebula) 40 7,500 [48]
Sher 25 (in HD 97950 of NGC 3603) 40 25,000 [49]
Romano's Star (in Triangulum Galaxy) 40 2,760,000 [50]
HD 93403 B (in Trumpler 16 of Carina Nebula) 37.3 10,400 [31]
P Cygni (in IC 4996 of Cygnus OB1) 37 5,100 [51][lower-alpha 11]
WR 148 B (Runaway star from Galactic plane) 37 27,000 [52]
9 Sagittarii B (in NGC 6530 of Lagoon Nebula) 36 5,800 [39]
LBV 1806-20 (in G10.0–0.3 of Galactic Center) 36 28,000 [53][lower-alpha 12]
WR 102d (in Quintuplet cluster) 36 26,000 [34]
ζ1 Scorpii (in NGC 6321 of Scorpius OB1) 36 8,220 [19]
θ1 Orionis C1 (in Trapezium Cluster of Orion Nebula) 33 1,350 [54]
ζ Orionis Aa (Alnitak in Orion OB1 of Orion Complex) 33 1,260 [55]
WR 9 B (in Puppis b) 32 15,000 [56][lower-alpha 13]
WR 102ai (in Arches Cluster) 31.1 25,000 [18]
α Camelopardalis (Runaway star from NGC 1502) 30.9 6,000 [57]
η Carinae B (in Trumpler 16 of Carina Nebula) 30 7,500 [58]
ε Orionis (Alnilam in Orion OB1 of Orion Complex) 30 2,000 [59]
WR 12 A (in Bochum 7) 30 18,600 [17][lower-alpha 14]
VFTS 352 B (in Tarantula Nebula of LMC) 28.85 164,000 [60]
VFTS 352 A (in Tarantula Nebula of LMC) 28.63 164,000 [60]
WR 142 (in Berkeley 87) 28.6 5,400 [61]
γ Velorum B (Regor in Vela OB2) 28.5 1,230 [62]
LH54-425 B (in LH 54 of LMC) 28 165,000 [44][lower-alpha 9]
Pistol Star (V4647 Sagittarii in Quintuplet cluster) 27.5 25,000 [45]
WR 1 (in Cassiopeia OB7) 27 10,200 [17]
10 Lacertae (in Lacerta OB1) 26.9 2,330 [63]
ξ Persei (Menkib in California Nebula of Perseus OB2) 26.1 1,200 [64]
WR 22 B (in Bochum 10 of Carina Nebula) 25.7 8,300 [65][lower-alpha 6]
NGC 7538S (in NGC 7538 of Cassiopeia OB2) 25 9,100 [66]
VFTS 102 (in Tarantula Nebula of LMC) 25 164,000 [67]
Sun 1 0.0000158 [68]

Black holes

Black holes are the end point evolution of massive stars. Technically they are not stars, as they no longer generate heat and light via nuclear fusion in their cores.[lower-alpha 15]

See also

Notes

  1. For some methods, different determinations of chemical composition lead to different estimates of mass.
  2. For a binary star, it is possible to measure the individual masses of the two stars by studying their orbital motions, using Kepler's laws of planetary motion.
  3. For examples of stellar debris see hypernovae and supernova remnant.
  4. This is a binary system but the secondary is much less massive than the primary.
  5. This unusual measurement was made by assuming the star was ejected from a three-body encounter in NGC 3603. This assumption also means that the current star is the result of a merger between two original close binary components. The mass is consistent with evolutionary mass for a star with the observed parameters.
  6. Bochum 10 is a open cluster in carina nebula.
  7. N135 is a emission nebula in Large Magellanic Cloud.
  8. Vela R2 is a OB association of Vela Molecular Ridge.
  9. LH 54 is a OB association in Large Magellanic Cloud.
  10. Sickle Nebula is a Wolf–Rayet nebula near Quintuplet cluster.
  11. IC 4996 is a open cluster in Cygnus OB1.
  12. LBV 1806-20 is a radio nebula in Galactic Center.
  13. Puppis b is a open cluster.
  14. Bochum 7 is a OB association.
  15. Note that some black holes may have cosmological origins, and would then never have been stars. This is thought to be especially likely in the cases of the most massive black holes.

References

  1. A. J. van Marle; S. P. Owocki; N. J. Shaviv (2008). "Continuum driven winds from super-Eddington stars. A tale of two limits". AIP Conference Proceedings. 990: 250–253. arXiv:0708.4207. Bibcode:2008AIPC..990..250V. doi:10.1063/1.2905555.
  2. Banerjee, S.; Kroupa, P.; Oh, S. (2012). "The emergence of super-canonical stars in R136-type starburst clusters". Monthly Notices of the Royal Astronomical Society. 426 (2): 1416–1426. arXiv:1208.0826. Bibcode:2012MNRAS.426.1416B. doi:10.1111/j.1365-2966.2012.21672.x.
  3. Ulmer, A.; Fitzpatrick, E. L. (1998). "Revisiting the modified Eddington limit for massive stars". The Astrophysical Journal. 504 (1): 200–206. arXiv:astro-ph/9708264. Bibcode:1998ApJ...504..200U. doi:10.1086/306048.
  4. Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O.; Hamann, W. -R. (2014). "The Wolf–Rayet stars in the Large Magellanic Cloud". Astronomy & Astrophysics. 565: A27. arXiv:1401.5474. Bibcode:2014A&A...565A..27H. doi:10.1051/0004-6361/201322696.
  5. Bestenlehner, Joachim M.; Crowther, Paul A.; Caballero-Nieves, Saida M.; Schneider, Fabian R. N.; Simón-Díaz, Sergio; Brands, Sarah A.; De Koter, Alex; Gräfener, Götz; Herrero, Artemio; Langer, Norbert; Lennon, Daniel J.; Maíz Apellániz, Jesus; Puls, Joachim; Vink, Jorick S. (2020). "The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136". Monthly Notices of the Royal Astronomical Society. arXiv:2009.05136. Bibcode:2020MNRAS.tmp.2627B. doi:10.1093/mnras/staa2801.
  6. Bestenlehner, J. M.; Gräfener, G.; Vink, J. S.; Najarro, F.; de Koter, A.; Sana, H.; Evans, C. J.; Crowther, P. A.; Hénault-Brunet, V.; Herrero, A.; Langer, N.; Schneider, F. R. N.; Simón-Díaz, S.; Taylor, W. D.; Walborn, N. R. (2014). "The VLT-FLAMES Tarantula Survey. XVII. Physical and wind properties of massive stars at the top of the main sequence". Astronomy & Astrophysics. 570. A38. arXiv:1407.1837. Bibcode:2014A&A...570A..38B. doi:10.1051/0004-6361/201423643.
  7. Bagnulo, S.; Wade, G. A.; Nazé, Y.; Grunhut, J. H.; Shultz, M. E.; Asher, D. J.; Crowther, P. A.; Evans, C. J.; David-Uraz, A.; Howarth, I. D.; Morrell, N.; Munoz, M. S.; Neiner, C.; Puls, J.; Szymański, M. K.; Vink, J. S. (2020). "A search for strong magnetic fields in massive and very massive stars in the Magellanic Clouds". Astronomy & Astrophysics. 635 (A163): 15. arXiv:2002.12061. Bibcode:2020A&A...635A.163B. doi:10.1051/0004-6361/201937098.
  8. De Becker, M.; Rauw, G.; Manfroid, J.; Eenens, P. (2006). "Early-type stars in the young open cluster IC 1805". Astronomy and Astrophysics. 456 (3): 1121–1130. arXiv:astro-ph/0606379. Bibcode:2006A&A...456.1121D. doi:10.1051/0004-6361:20065300.
  9. Tehrani, Katie A.; Crowther, Paul A.; Bestenlehner, Joachim M.; Littlefair, Stuart P.; Pollock, A M T.; Parker, Richard J.; Schnurr, Olivier (2019). "Weighing Melnick 34: The most massive binary system known". Monthly Notices of the Royal Astronomical Society. 484 (2): 2692–2710. arXiv:1901.04769. Bibcode:2019MNRAS.484.2692T. doi:10.1093/mnras/stz147.
  10. Schneider, F. R. N.; Sana, H.; Evans, C. J.; Bestenlehner, J. M.; Castro, N.; Fossati, L.; Gräfener, G.; Langer, N.; Ramírez-Agudelo, O. H.; Sabín-Sanjulián, C.; Simón-Díaz, S.; Tramper, F.; Crowther, P. A.; de Koter, A.; de Mink, S. E.; Dufton, P. L.; Garcia, M.; Gieles, M.; Hénault-Brunet, V.; Herrero, A.; Izzard, R. G.; Kalari, V.; Lennon, D. J.; Maíz Apellániz, J.; Markova, N.; Najarro, F.; Podsiadlowski, Ph.; Puls, J.; Taylor, W. D.; van Loon, J. Th.; Vink, J. S.; Norman, C. (2018). "An excess of massive stars in the local 30 Doradus starburst". Science. 359 (6371): 69–71. arXiv:1801.03107. Bibcode:2018Sci...359...69S. doi:10.1126/science.aan0106.
  11. Walborn, Nolan R.; Howarth, Ian D.; Lennon, Daniel J.; Massey, Philip; Oey, M. S.; Moffat, Anthony F. J.; Skalkowski, Gwen; Morrell, Nidia I.; Drissen, Laurent; Parker, Joel Wm. (2002). "A New Spectral Classification System for the Earliest O Stars: Definition of Type O2" (PDF). The Astronomical Journal. 123 (5): 2754–2771. Bibcode:2002AJ....123.2754W. doi:10.1086/339831.
  12. Crowther, P. A.; Schnurr, O.; Hirschi, R.; Yusof, N.; Parker, R. J.; Goodwin, S. P.; Kassim, H. A. (2010). "The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M stellar mass limit". Monthly Notices of the Royal Astronomical Society. 408 (2): 731–751. arXiv:1007.3284. Bibcode:2010MNRAS.408..731C. doi:10.1111/j.1365-2966.2010.17167.x.
  13. Evans, C. J.; Walborn, N. R.; Crowther, P. A.; Hénault-Brunet, V.; Massa, D.; Taylor, W. D.; Howarth, I. D.; Sana, H.; Lennon, D. J.; Van Loon, J. T. (2010). "A Massive Runaway Star from 30 Doradus". The Astrophysical Journal. 715 (2): L74. arXiv:1004.5402. Bibcode:2010ApJ...715L..74E. doi:10.1088/2041-8205/715/2/L74.
  14. Roman-Lopes, A.; Franco, G. A. P.; Sanmartim, D. (2016). "SOAR Optical and Near-infrared Spectroscopic Survey of Newly Discovered Massive Stars in the Periphery of Galactic Massive Star Clusters I-NGC 3603". The Astrophysical Journal. 823 (2): 96. arXiv:1604.01096. Bibcode:2016ApJ...823...96R. doi:10.3847/0004-637X/823/2/96. S2CID 119204619.
  15. Massey, P.; Degioia-Eastwood, K.; Waterhouse, E. (2001). "The Progenitor Masses of Wolf-Rayet Stars and Luminous Blue Variables Determined from Cluster Turnoffs. II. Results from 12 Galactic Clusters and OB Associations". The Astronomical Journal. 121 (2): 1050–1070. arXiv:astro-ph/0010654. Bibcode:2001AJ....121.1050M. doi:10.1086/318769.
  16. Drew, J E; Herrero, A; Mohr-Smith, M; Monguió, M; Wright, N J; Kupfer, T; Napiwotzki, R (2018-10-21). "Massive stars in the hinterland of the young cluster, Westerlund 2". Monthly Notices of the Royal Astronomical Society. 480 (2): 2109–2124. arXiv:1807.06486. Bibcode:2018MNRAS.480.2109D. doi:10.1093/mnras/sty1905. ISSN 0035-8711.
  17. Sota, A.; Maíz Apellániz, J.; Morrell, N. I.; Barbá, R. H.; Walborn, N. R.; Gamen, R. C.; Arias, J. I.; Alfaro, E. J.; Oskinova, L. M. (2019). "The Galactic WN stars revisited. Impact of Gaia distances on fundamental stellar parameters". Astronomy & Astrophysics. A57: 625. arXiv:1904.04687. Bibcode:2019A&A...625A..57H. doi:10.1051/0004-6361/201834850. S2CID 104292503.
  18. Gräfener, G.; Vink, J. S.; De Koter, A.; Langer, N. (2011). "The Eddington factor as the key to understand the winds of the most massive stars". Astronomy & Astrophysics. 535: A56. arXiv:1106.5361. Bibcode:2011A&A...535A..56G. doi:10.1051/0004-6361/201116701.
  19. Clark, J. S.; Najarro, F.; Negueruela, I.; Ritchie, B. W.; Urbaneja, M. A.; Howarth, I. D. (2012). "On the nature of the galactic early-B hypergiants". Astronomy & Astrophysics. 541: A145. arXiv:1202.3991. Bibcode:2012A&A...541A.145C. doi:10.1051/0004-6361/201117472.
  20. Nelan, Edmund P.; Walborn, Nolan R.; Wallace, Debra J.; Moffat, Anthony F. J.; Makidon, Russell B.; Gies, Douglas R.; Panagia, Nino (2004). "Resolving OB Systems in the Carina Nebula with the Hubble Space Telescope Fine Guidance Sensor". The Astronomical Journal. 128 (1): 323–329. Bibcode:2004AJ....128..323N. doi:10.1086/420716.
  21. Tramper, F.; Sana, H.; Fitzsimons, N. E.; De Koter, A.; Kaper, L.; Mahy, L.; Moffat, A. (2016). "The mass of the very massive binary WR21a". Monthly Notices of the Royal Astronomical Society. 455 (2): 1275–1281. arXiv:1510.03609. Bibcode:2016MNRAS.455.1275T. doi:10.1093/mnras/stv2373. S2CID 44364798.
  22. Oskinova, L. M.; Steinke, M.; Hamann, W. - R.; Sander, A.; Todt, H.; Liermann, A. (2013). "One of the most massive stars in the Galaxy may have formed in isolation". Monthly Notices of the Royal Astronomical Society. 436 (4): 3357. arXiv:1309.7651. Bibcode:2013MNRAS.436.3357O. doi:10.1093/mnras/stt1817. S2CID 118513968.
  23. Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Paardekooper, J.-P.; Gull, T. R. (2015). "3D radiative transfer simulations of Eta Carinae's inner colliding winds - I. Ionization structure of helium at apastron". Monthly Notices of the Royal Astronomical Society. 447 (3): 2445–2458. arXiv:1412.7569. Bibcode:2015MNRAS.447.2445C. doi:10.1093/mnras/stu2614.
  24. Crowther, Paul A.; Caballero-Nieves, S. M.; Bostroem, K. A.; Maíz Apellániz, J.; Schneider, F. R. N.; Walborn, N. R.; Angus, C. R.; Brott, I.; Bonanos, A.; de Koter, A.; de Mink, S. E.; Evans, C. J.; Gräfener, G.; Herrero, A.; Howarth, I. D.; Langer, N.; Lennon, D. J.; Puls, J.; Sana, H.; Vink, J. S. (2016). "The R136 star cluster dissected with Hubble Space Telescope/STIS. I. Far-ultraviolet spectroscopic census and the origin of He II λ1640 in young star clusters". Monthly Notices of the Royal Astronomical Society. 458 (1): 624–659. arXiv:1603.04994. Bibcode:2016MNRAS.458..624C. doi:10.1093/mnras/stw273.
  25. Sana, H.; Van Boeckel, T.; Tramper, F.; Ellerbroek, L. E.; De Koter, A.; Kaper, L.; Moffat, A. F. J.; Schnurr, O.; Schneider, F. R. N.; Gies, D. R. (2013). "R144 revealed as a double-lined spectroscopic binary". Monthly Notices of the Royal Astronomical Society: Letters. 432: L26–L30. arXiv:1304.4591. Bibcode:2013MNRAS.432L..26S. doi:10.1093/mnrasl/slt029.
  26. Weidner, C.; Vink, J. S. (2010). "The masses, and the mass discrepancy of O-type stars". Astronomy and Astrophysics. 524: A98. arXiv:1010.2204. Bibcode:2010A&A...524A..98W. doi:10.1051/0004-6361/201014491. S2CID 118836634.
  27. Rauw, G.; Crowther, P. A.; De Becker, M.; Gosset, E.; Nazé, Y.; Sana, H.; Van Der Hucht, K. A.; Vreux, J. -M.; Williams, P. M. (2005). "The spectrum of the very massive binary system WR?20a (WN6ha + WN6ha): Fundamental parameters and wind interactions" (PDF). Astronomy and Astrophysics. 432 (3): 985–998. Bibcode:2005A&A...432..985R. doi:10.1051/0004-6361:20042136.
  28. Fang, M.; Van Boekel, R.; King, R. R.; Henning, T.; Bouwman, J.; Doi, Y.; Okamoto, Y. K.; Roccatagliata, V.; Sicilia-Aguilar, A. (2012). "Star formation and disk properties in Pismis 24". Astronomy & Astrophysics. 539: A119. arXiv:1201.0833. Bibcode:2012A&A...539A.119F. doi:10.1051/0004-6361/201015914.
  29. Kastner, J. H.; Buchanan, C. L.; Sargent, B.; Forrest, W. J. (2006). "SpitzerSpectroscopy of Dusty Disks around B\e] Hypergiants in the Large Magellanic Cloud". The Astrophysical Journal. 638 (1): L29–L32. Bibcode:2006ApJ...638L..29K. doi:10.1086/500804.
  30. Orosz, J. A.; McClintock, J. E.; Narayan, R.; Bailyn, C. D.; Hartman, J. D.; Macri, L.; Liu, J.; Pietsch, W.; Remillard, R. A.; Shporer, A.; Mazeh, T. (2007). "A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33". Nature. 449 (7164): 872–875. arXiv:0710.3165. Bibcode:2007Natur.449..872O. doi:10.1038/nature06218. PMID 17943124.
  31. Rauw, G.; Sana, H.; Gosset, E.; Vreux, J.-M.; Jehin, E.; Parmentier, G. (2000). "A new orbital solution for the massive binary system HD 93403". Astronomy and Astrophysics. 360: 1003. Bibcode:2000A&A...360.1003R.
  32. Shenar, T.; Hainich, R.; Todt, H.; Sander, A.; Hamann, W.-R.; Moffat, A. F. J.; Eldridge, J. J.; Pablo, H.; Oskinova, L. M.; Richardson, N. D. (2016). "Wolf-Rayet stars in the Small Magellanic Cloud: II. Analysis of the binaries". Astronomy & Astrophysics. 1604. A22. arXiv:1604.01022. Bibcode:2016A&A...591A..22S. doi:10.1051/0004-6361/201527916.
  33. Comerón, F.; Pasquali, A. (2012). "New members of the massive stellar population in Cygnus". Astronomy & Astrophysics. 110: 2715. Bibcode:2012A&A...543A.101C. doi:10.1051/0004-6361/201219022.
  34. Liermann, Adriane; Hamann, Wolf-Rainer; Oskinova, Lidia M.; Todt, Helge (2011). "High-mass stars in the Galactic center Quintuplet cluster". Société Royale des Sciences de Liège. 80: 160–164. Bibcode:2011BSRSL..80..160L.
  35. Burggraf, B.; Weis, K.; Bomans, D. J. (2006). "LBVs in M33: Their Environments and Ages". Stellar Evolution at Low Metallicity: Mass Loss. 353: 245. Bibcode:2006ASPC..353..245B.
  36. Bhatt, H.; Pandey, J. C.; Kumar, B.; Singh, K. P.; Sagar, R. (2010). "X-ray emission characteristics of two Wolf–Rayet binaries: V444 Cyg and CD Cru". Monthly Notices of the Royal Astronomical Society. 402 (3): 1767–1779. arXiv:0911.1489. Bibcode:2010MNRAS.402.1767B. doi:10.1111/j.1365-2966.2009.15999.x.
  37. Bouret, J. -C.; Hillier, D. J.; Lanz, T.; Fullerton, A. W. (2012). "Properties of Galactic early-type O-supergiants: A combined FUV-UV and optical analysis". Astronomy & Astrophysics. 544: A67. arXiv:1205.3075. Bibcode:2012A&A...544A..67B. doi:10.1051/0004-6361/201118594.
  38. Linder, N.; et al. (October 2008), "High-resolution optical spectroscopy of Plaskett's star", Astronomy and Astrophysics, 489 (2): 713–723, arXiv:0807.4823, Bibcode:2008A&A...489..713L, doi:10.1051/0004-6361:200810003, S2CID 118431215
  39. Krtička, J.; Kubát, J.; Krtičková, I. (2015). "X-ray irradiation of the winds in binaries with massive components". Astronomy & Astrophysics. 579: A111. arXiv:1505.03411. Bibcode:2015A&A...579A.111K. doi:10.1051/0004-6361/201525637. S2CID 119120927.
  40. Shenar, T. (2016). "The Tarantula Massive Binary Monitoring project: II. A first SB2 orbital and spectroscopic analysis for the Wolf-Rayet binary R145". Astronomy & Astrophysics. 1610: A85. arXiv:1610.07614. Bibcode:2017A&A...598A..85S. doi:10.1051/0004-6361/201629621.
  41. Vink, J. S.; Davies, B.; Harries, T. J.; Oudmaijer, R. D.; Walborn, N. R. (2009). "On the presence and absence of disks around O-type stars". Astronomy and Astrophysics. 505 (2): 743–753. arXiv:0909.0888. Bibcode:2009A&A...505..743V. doi:10.1051/0004-6361/200912610.
  42. Wright, Nicholas J.; Drew, Janet E.; Mohr-Smith, Michael (2015). "The massive star population of Cygnus OB2". Monthly Notices of the Royal Astronomical Society. 449: 741–760. arXiv:1502.05718. Bibcode:2015MNRAS.449..741W. doi:10.1093/mnras/stv323.
  43. Peeples, Molly S.; et al. (January 2007). "The Nature of the Variable Galactic Center Source GCIRS 16SW Revisited: A Massive Eclipsing Binary". The Astrophysical Journal. 654 (1): L61–L64. arXiv:astro-ph/0610212. Bibcode:2007ApJ...654L..61P. doi:10.1086/510720. S2CID 14242573.
  44. Williams, S. J.; et al. (2008). "Dynamical Masses for the Large Magellanic Cloud Massive Binary System [L72] LH 54-425". The Astrophysical Journal. 682 (1): 492–498. arXiv:0802.4232. Bibcode:2008ApJ...682..492W. doi:10.1086/589687.
  45. Najarro, F.; Figer, D. F.; Hillier, D. J.; Geballe, T. R.; Kudritzki, R. P. (2009). "Metallicity in the Galactic Center: The Quintuplet Cluster". The Astrophysical Journal. 691 (2): 1816–1827. arXiv:0809.3185. Bibcode:2009ApJ...691.1816N. doi:10.1088/0004-637X/691/2/1816. S2CID 15473563.
  46. Barniske, A.; Oskinova, L. M.; Hamann, W. -R. (2008). "Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas". Astronomy and Astrophysics. 486 (3): 971–984. arXiv:0807.2476. Bibcode:2008A&A...486..971B. doi:10.1051/0004-6361:200809568.
  47. Geballe, T. R.; Najarro, F.; Rigaut, F.; Roy, J. ‐R. (2006). "TheK‐Band Spectrum of the Hot Star in IRS 8: An Outsider in the Galactic Center?". The Astrophysical Journal. 652 (1): 370–375. arXiv:astro-ph/0607550. Bibcode:2006ApJ...652..370G. doi:10.1086/507764.
  48. Benvenuto, O. G.; Serenelli, A. M.; Althaus, L. G.; Barbá, R. H.; Morrell, N. I. (2002). "Calculation of the masses of the binary star HD 93205 by application of the theory of apsidal motion". Monthly Notices of the Royal Astronomical Society. 330 (2): 435–442. arXiv:astro-ph/0110662. Bibcode:2002MNRAS.330..435B. doi:10.1046/j.1365-8711.2002.05083.x. S2CID 16834579.
  49. Hendry, M. A.; Smartt, S. J.; Skillman, E. D.; Evans, C. J.; Trundle, C.; Lennon, D. J.; Crowther, P. A.; Hunter, I. (2008). "The blue supergiant Sher 25 and its intriguing hourglass nebula". Monthly Notices of the Royal Astronomical Society. 388 (3): 1127. arXiv:0803.4262. Bibcode:2008MNRAS.388.1127H. doi:10.1111/j.1365-2966.2008.13347.x.
  50. Maryeva, Olga V.; Koenigsberger, Gloria; Karpov, Sergey V.; Lozinskaya, Tatiana A.; Egorov, Oleg V.; Rossi, Corinne; Calabresi, Massimo; Viotti, Roberto F. (2020). "Asymmetrical nebula of the M33 variable GR290 (WR/LBV)". Astronomy & Astrophysics. 635: A201. arXiv:2002.10587. Bibcode:2020A&A...635A.201M. doi:10.1051/0004-6361/201936840. ISSN 0004-6361.
  51. Rivet, J. -P.; Siciak, A.; de Almeida, E. S. G.; Vakili, F.; Domiciano de Souza, A.; Fouché, M.; Lai, O.; Vernet, D.; Kaiser, R.; Guerin, W. (2020). "Intensity interferometry of P Cygni in the H α emission line: towards distance calibration of LBV supergiant stars". Monthly Notices of the Royal Astronomical Society. 494 (1): 218–227. arXiv:1910.08366. Bibcode:2020MNRAS.494..218R. doi:10.1093/mnras/staa588.
  52. Munoz, Melissa; Moffat, Anthony F. J.; Hill, Grant M.; Shenar, Tomer; Richardson, Noel D.; Pablo, Herbert; St-Louis, Nicole; Ramiaramanantsoa, Tahina (2017). "WR 148: Identifying the companion of an extreme runaway massive binary*". Monthly Notices of the Royal Astronomical Society. 467 (3): 3105. arXiv:1609.08289. Bibcode:2017MNRAS.467.3105M. doi:10.1093/mnras/stw2283. S2CID 119199391.
  53. Bibby, J. L.; Crowther, P. A.; Furness, J. P.; Clark, J. S. (2008). "A downward revision to the distance of the 1806-20 cluster and associated magnetar from Gemini Near-Infrared Spectroscopy". Monthly Notices of the Royal Astronomical Society: Letters. 386 (1): L23. arXiv:0802.0815. Bibcode:2008MNRAS.386L..23B. doi:10.1111/j.1745-3933.2008.00453.x. S2CID 14466990.
  54. Balega, Yu. Yu.; Chentsov, E. L.; Leushin, V. V.; Rzaev, A. Kh.; Weigelt, G. (2014). "Young massive binary θ 1 OriC: Radial velocities of components". Astrophysical Bulletin. 69 (1): 46–57. Bibcode:2014AstBu..69...46B. doi:10.1134/S1990341314010052. ISSN 1990-3413. S2CID 120838635.
  55. Hummel, C. A.; Rivinius, T.; Nieva, M. -F.; Stahl, O.; Van Belle, G.; Zavala, R. T. (2013). "Dynamical mass of the O-type supergiant in ζ Orionis A". Astronomy & Astrophysics. 554: A52. arXiv:1306.0330. Bibcode:2013A&A...554A..52H. doi:10.1051/0004-6361/201321434. S2CID 53645495.
  56. Petrovic, J.; Langer, N.; Van Der Hucht, K. A. (2005). "Constraining the mass transfer in massive binaries through progenitor evolution models of Wolf-Rayet+O binaries". Astronomy and Astrophysics. 435 (3): 1013. arXiv:astro-ph/0504242. Bibcode:2005A&A...435.1013P. doi:10.1051/0004-6361:20042368. S2CID 16778765.
  57. Markova, N. (April 2002), "Spectral variability of luminous early type stars . II. Supergiant alpha Camelopardalis", Astronomy and Astrophysics, 385 (2): 479–487, Bibcode:2002A&A...385..479M, doi:10.1051/0004-6361:20020153 See Table 1.
  58. Kashi, A.; Soker, N. (2010). "Periastron Passage Triggering of the 19th Century Eruptions of Eta Carinae". The Astrophysical Journal. 723 (1): 602–611. arXiv:0912.1439. Bibcode:2010ApJ...723..602K. doi:10.1088/0004-637X/723/1/602.
  59. Raul E. Puebla; D. John Hillier; Janos Zsargó; David H. Cohen; Maurice A. Leutenegger (2015). "X-ray, UV and optical analysis of supergiants: ε Ori". Monthly Notices of the Royal Astronomical Society. 456 (3): 2907–2936. arXiv:1511.09365. Bibcode:2016MNRAS.456.2907P. doi:10.1093/mnras/stv2783.
  60. Almeida, L. A.; Sana, H.; de Mink, S. E.; et al. (13 October 2015). "DISCOVERY OF THE MASSIVE OVERCONTACT BINARY VFTS 352: EVIDENCE FOR ENHANCED INTERNAL MIXING". The Astrophysical Journal. 812 (2): 102. arXiv:1509.08940. Bibcode:2015ApJ...812..102A. doi:10.1088/0004-637X/812/2/102.
  61. Sander, A. A. C.; Hamann, W.-R.; Todt, H.; Hainich, R.; Shenar, T.; Ramachandran, V.; Oskinova, L. M. (2019). "The Galactic WC and WO stars". Astronomy & Astrophysics. 621: A92. arXiv:1807.04293. Bibcode:2019A&A...621A..92S. doi:10.1051/0004-6361/201833712. S2CID 67754788.
  62. North, J. R.; Tuthill, P. G.; Tango, W. J.; Davis, J. (2007). "Γ2 Velorum: Orbital solution and fundamental parameter determination with SUSI". Monthly Notices of the Royal Astronomical Society. 377 (1): 415–424. arXiv:astro-ph/0702375. Bibcode:2007MNRAS.377..415N. doi:10.1111/j.1365-2966.2007.11608.x. S2CID 16425744.
  63. Mokiem, M. R.; de Koter, A.; Puls, J.; Herrero, A.; Najarro, F.; Villamariz, M. R. (October 2005). "Spectral analysis of early-type stars using a genetic algorithm based fitting method". Astronomy and Astrophysics. 441 (2): 711–733. arXiv:astro-ph/0506751. Bibcode:2005A&A...441..711M. doi:10.1051/0004-6361:20053522. S2CID 9965794.
  64. Repolust, T.; Puls, J.; Herrero, A. (2004). "Stellar and wind parameters of Galactic O-stars. The influence of line-blocking/blanketing". Astronomy and Astrophysics. 415 (1): 349–376. Bibcode:2004A&A...415..349R. doi:10.1051/0004-6361:20034594.
  65. Parkin, E. R.; Gosset, E. (2011). "Investigating the X-ray emission from the massive WR+O binary WR 22 using 3D hydrodynamical models". Astronomy & Astrophysics. 530: A119. arXiv:1104.2383. Bibcode:2011A&A...530A.119P. doi:10.1051/0004-6361/201016125. S2CID 55645991.
  66. Moscadelli, L.; Goddi, C. (2014). "A multiple system of high-mass YSOs surrounded by disks in NGC 7538 IRS1". Astronomy & Astrophysics. 566: A150. arXiv:1404.3957. Bibcode:2014A&A...566A.150M. doi:10.1051/0004-6361/201423420.
  67. Dufton, P. L.; Dunstall, P. R.; Evans, C. J.; Brott, I.; Cantiello, M.; De Koter, A.; De Mink, S. E.; Fraser, M.; Hénault-Brunet, V.; Howarth, I. D.; Langer, N.; Lennon, D. J.; Markova, N.; Sana, H.; Taylor, W. D. (2011). "The VLT-FLAMES Tarantula Survey: The Fastest Rotating O-type Star and Shortest Period LMC Pulsar—Remnants of a Supernova Disrupted Binary?". The Astrophysical Journal Letters. 743 (1): L22. arXiv:1111.0157. Bibcode:2011ApJ...743L..22D. doi:10.1088/2041-8205/743/1/L22. S2CID 118448435.
  68. RESOLUTION B2 on the re-definition of the astronomical unit of length (PDF), Beijing: International Astronomical Union, 31 August 2012, The XXVIII General Assembly of International Astronomical Union recommends [adopted] that the astronomical unit be re-defined to be a conventional unit of length equal to exactly 149,597,870,700 metres, in agreement with the value adopted in IAU 2009 Resolution B2
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.