List of nearest exoplanets

There are 4,414 known exoplanets, or planets outside the Solar System that orbit a star, as of February 1, 2021; only a small fraction of these are located in the vicinity of the Solar System.[3] Within 10 parsecs (32.6 light-years), there are 97 exoplanets listed as confirmed by the NASA Exoplanet Archive.[note 1][4] Among the over 400 known stars within 10 parsecs,[note 2][6] around 60 have been confirmed to have planetary systems; 51 stars in this range are visible to the naked eye,[note 3][8] nine of which have planetary systems.

Exoplanet Fomalhaut b (Dagon), 25 light-years away, with its parent star Fomalhaut blacked out, as pictured by Hubble in 2012.[1] In 2020 this object was determined to be an expanding debris cloud from a collision of asteroids rather than a planet.[2]
Distribution of nearest exoplanets

The first report of an exoplanet within this range was in 1998 for a planet orbiting around Gliese 876 (15.3 light-years (ly) away), and the latest as of 2020 is one around AU Microscopii (32 ly). The closest exoplanet found is Proxima Centauri b, which was confirmed in 2016 to orbit Proxima Centauri, the closest star to the Solar System (4.25 ly). HD 219134 (21.6 ly) has six exoplanets, the highest number discovered for any star within this range.

Most known nearby exoplanets orbit close to their stars. A majority are significantly larger than Earth, but a few have similar masses, including two planets (around YZ Ceti, 12 ly) which may be less massive than Earth. Several confirmed exoplanets are hypothesized to be potentially habitable, with Proxima Centauri b and Gliese 667 Cc (23.6 ly) considered among the most likely candidates.[9] The International Astronomical Union took a public survey in 2015 to assign proper names to some known extrasolar bodies, including the planets around Epsilon Eridani (10.5 ly) and Fomalhaut.[note 4][12]

Exoplanets within 10 parsecs

Key to colors
° Mercury, Earth and Jupiter (for comparison purposes)
# Confirmed multiplanetary systems
Exoplanets believed to be potentially habitable[9]
Confirmed exoplanets[4]
Host star system Companion exoplanet (in order from star) Notes and additional planetary observations
Name Distance
(ly)
Apparent
magnitude

(V)
Mass
(M)
Label
[note 5]
Mass
(M)[note 6]
Radius
(R)
Semi-major axis
(AU)
Orbital period
(days)
Eccentricity
Inclination
(°)
Discovery
method
Discovery year
Sun° 0−26.71 Mercury0.0550.38290.38788.0 0.205
Earth111365.30.0167
Jupiter317.810.9735.204,3330.0488
Proxima Centauri# 4.244111.130.123 b>1.2~1.1?0.048611.20.109~133?RV2016 [14][9][15][16][17] 1 candidate[18]
c71.4891,9280.04133RV2020
Barnard's Star 5.9589.5110.144 b>4.20.4302320.04RV2018 [19][20]
Wolf 359# 7.89513.540.09 c>3.80.0182.690.15RV2019 [20]
b>43.91.8452,9400.04RV2019
Lalande 21185 8.3077.520.46 b>2.70.078912.90.12RV2017 [20][21]
Epsilon Eridani 10.4893.730.781 Ægir2483.482,6920.0789RV2000 1 inferred planet, 1 or possibly 2 inner debris discs, and an outer disc[22][23][24]
Lacaille 9352# 10.7217.340.489 b>4.20.0689.260.03RV2019 1 candidate[20][25]
c>7.60.12021.80.03RV2019
Ross 128 11.00711.10.168 b>1.4~1.2?0.04969.870.12RV2017 [26]
Struve 2398 B# 11.4909.70.248 b>15.70.26191.30.06RV2019 [20]
c>13.10.4281920.03RV2019
Groombridge 34 A# 11.6188.10.38 b>3.030.07211.40.094~61?RV2014 [27][28][29]
c>365.47,6000.27~61?RV2018
Tau Ceti# 11.7533.500.78 g>1.70.13320.00.06RV2017 4 candidates
[30][31][9][32][33][34]
h>1.80.24349.40.23RV2017
e>3.9~1.6?0.5381630.18RV2017
f>3.91.336400.16RV2017
Epsilon Indi A 11.8694.830.762 b103011.5516,5000.2664.25RV2018 [35]

[36][37]

Gliese 1061# 11.9807.520.113 b>1.40.0213.20<0.31RV2019 two solutions for d's orbit[38]
c>1.70.0356.69<0.29RV2019
d>1.60.05212.4<0.54RV2019
YZ Ceti# 12.10812.10.130 b>0.750.01561.970.0RV2017 1 candidate
[39][40][20]
c>1.20.02093.060.04RV2017
d>1.10.02764.660.03RV2017
Luyten's Star# 12.19911.940.29 c>1.20.03654.720.12RV2017 [9][41][20]
b>2.2~1.4?0.09018.60.03RV2017
d>10.80.7124140.17RV2019
e>9.30.8495420.03RV2019
Teegarden's Star# 12.49615.400.08 b>1.10.02524.910RV2019 [42]
c>1.10.044311.40RV2019
Kapteyn's Star# 12.8298.80.28 c>6.90.3111210.07RV2014 [43] 1 disputed candidate[44][20]
Wolf 1061# 14.04610.10.25 b>1.90.03754.890.03RV2015 [9][45][20]
c>3.6~1.5?0.0890 17.90.03RV2015
d>6.50.4211840.02RV2015
Gliese 83.1# 14.58412.300.14 b>30.90.4032420.18RV2019 1 candidate[20][46][note 7]
c>71.60.8707680.33RV2019
Gliese 674 14.8399.380.35 b>11.20.0394.690.23RV2007 [47][48][20]
Gliese 687# 14.8409.150.41 b>17.20.16338.10.17RV2014 [49][20][46]
c>16.01.1657280.40RV2019
Gliese 876# 15.25010.20.33 d6.80.02081.940.1259.5RV2005 [50][20]
c2300.13330.20.00159.5RV2000
b7200.21361.00.00159.5RV1998
e150.3421250.1859.5RV2010
Gliese 832# 16.1948.670.45 c>5.4~1.7?0.16435.70.06RV2014 [9][51][20]
b>2063.673,8300.06RV2008
40 Eridani A 16.3864.40.84 b>8.50.22442.40.04~72?RV2018 [52]
Gliese 3323# 17.53312.20.164 b>2.0~1.3?0.03285.360.2RV2017 [53]
c>2.30.12640.50.2RV2017
Gliese 251 18.2049.650.372 b>4.00.081814.20.10RV2020 2 previous candidates; replaced by a single-planet solution[54][20][21]
Gliese 205# 18.5927.970.63 b>10.30.10916.90.11RV2019 [20]
c>13.80.6892710.04RV2019
Gliese 229 A# 18.7778.140.58 c>7.30.3391220.19RV2020 Ab not confirmed until 2020.[55]
b>8.50.8985260.10RV2014
Gliese 752 A 19.2869.130.46 b>13.60.3381060.03RV2018 [56][20]
Gliese 754 19.28912.230.18 b>9.80.27778.40.03RV2019 [20]
Gliese 588# 19.2989.310.46 b>2.40.0495.810.04RV2019 [20]
c>10.30.5302060.06RV2019
82 G. Eridani# 19.5824.260.85 b>2.70.12118.3~0RV2011 2 candidates
[57][58][59]
c>2.40.20440.1~0RV2011
d>4.80.35090~0RV2011
e>4.80.509147 0.29RV2017
Gliese 784 20.0837.970.5 b>9.40.0596.660.05RV2019 [20]
Gliese 555 20.37011.320.29 b>30.10.7274500.04RV2019 [20]
Gliese 581# 20.54510.50.31 e>1.70.02823.150.0~45?RV2009 2 disputed candidates and a disc
[60][61][62][63]
b>160.04065.370.0~45?RV2005
c>5.50.07212.90.0~45?RV2007
Gliese 338 B 20.6587.00.64 b>10.30.14124.50.11RV2020 [64]
Gliese 625 21.11410.20.30 b>2.80.078414.6~0.1RV2017 [65]
HD 219134# 21.3065.570.78 b4.71.600.03883.09~085.05RV2015 [66][67][68]
c4.41.510.0656.770.06287.28RV2015
d>16>1.610.23746.90.138~87?RV2015
f>7.3>1.310.14622.70.148~87?RV2015
g>110.37594.20~87?RV2015
h (e)>1083.112,2470.06~87?RV2015
Gliese 880 22.3998.640.59 b>8.50.18739.40.13RV2019 [20]
LTT 1445 A 22.40910.530.26 b~2.21.350.03815.360.1689.47Transit2019 [69]
Gliese 393 22.9388.650.41 b>1.90.0557.030.03RV2019 [20]
Gliese 667 C# 23.63210.20.33 b>5.40.0497.200.13~52?RV2009 5 dubious candidates
[70][9][71][72][20]
c>3.9~1.5?0.125128.20.03~52?RV2011
Gliese 514 24.8519.030.53 b>4.30.09715.00.05RV2019 [20]
Gliese 1151 26.23114.010.15 b>2.50.0172.020Magnetic
interaction
2020 [73][74]
Gliese 300 26.46912.130.26 b>6.80.0508.330.29RV2019 [20]
Gliese 686 26.6129.580.42 b>7.10.09715.50.04RV2019 [75][20]
61 Virginis# 27.7414.740.95 b>5.10.05024.22~0.1~77?RV2009 a debris disc
[76]
c>180.21838.00.14~77?RV2009
d>230.4761230.35~77?RV2009
CD Ceti 28.08014.0010.161 b>4.00.01852.290RV2020 [77]
Gliese 785# 28.6996.130.78 b>170.32750.13RV2010 [78]
c>241.18530~0.3RV2011
Gliese 849# 28.71110.40.49 b>2702.261,9100.05RV2006 [79][20]
c>3004.82 5,5200.087RV2006
Gliese 433# 29.5729.790.48 b>6.00.0627.370.04RV2009 [80][20][55]
d>5.20.17836.10.07RV2020
c>324.825,0900.12RV2012
Gliese 3325 30.10911.730.27 b>11.80.07112.90.03RV2019 [20]
HD 102365 A 30.3744.890.85 b>160.461220.34RV2010 [81]
Gliese 357# 30.80310.90.34 b1.61.170.0353.930.0288.92Transit2019 [82][20]
c>3.60.0619.130.04~89?RV2019
d>7.70.20455.70.03~89?RV2019
Gliese 176# 30.87910.10.45 b>8.00.0668.770.08RV2007 1 dubious planet[83][84][20]
c↑>7.40.14628.60.02RV2019
Gliese 479 30.91210.660.43 b>5.10.07411.30.03RV2019 [20]
Gliese 3512# 30.94913.110.123 b>1470.3382040.44RV2019 [85]
c>54>1.2>1390RV2019
AU Microscopii# 31.7198.630.50 b174.380.06458.4630.1089.03Transit2020 [86][87]
c<283.510.110118.86088.62Transit2020
Gliese 436 31.82010.670.41 b21.44.330.02802.640.1585.8RV2004 1 candidate[20]
Gliese 49 32.1458.90.57 b>16.40.10617.30.03RV2019 [20]

Excluded objects

Unlike for bodies within the Solar System, there is no clearly established method for officially recognizing an exoplanet. According to the International Astronomical Union, an exoplanet should be considered confirmed if it has not been disputed for five years after its discovery.[88] There have been examples where the existence of exoplanets has been proposed, but even after follow-up studies their existence is still considered doubtful by some astronomers. Such cases include LHS 288 (15.6 ly, in 2007[89]). There are also some instances where proposed exoplanets were later disproved by subsequent studies, including candidates around Alpha Centauri B (4.36 ly),[90] Van Maanen 2 (13.9 ly),[91] Groombridge 1618 (15.9 ly),[92] AD Leonis (16.2 ly),[93] Gliese 682 (16.6 ly),[55] VB 10 (18.7 ly),[94] and Fomalhaut (25.1 ly).[2]

In 2021, a candidate planet was detected around Vega, though it has yet to be confirmed.[95]

The Working Group on Extrasolar Planets of the International Astronomical Union adopted in 2003 a working definition on the upper limit for what constitutes a planet: not being massive enough to sustain thermonuclear fusion of deuterium. Some studies have calculated this to be somewhere around 13 times the mass of Jupiter, and therefore objects more massive than this are usually classified as brown dwarfs.[96] Some proposed candidate exoplanets were later shown to be massive enough to fall above the threshold, and are likely brown dwarfs, as was the case for: SCR 1845-6357 B (12.6 ly),[97] SDSS J1416+1348 B (29.7 ly),[98] and WISE 1217+1626 B (30 ly).[99]

Excluded from the current list are known examples of potential free-floating sub-brown dwarfs, or "rogue planets", which are bodies that are too small to undergo fusion yet they do not revolve around a star. Known such examples include: WISE 0855–0714 (7.3 ly),[100] UGPS 0722-05, (13 ly)[101] WISE 1541−2250 (18.6 ly),[102] and SIMP J01365663+0933473 (20 ly).[103]

Statistics

Planetary systems

Systems by planet count
Exoplanets No. of
systems
Systems
6 1 HD 219134
5 0
4 4 Tau Ceti, Luyten's Star, Gliese 876, 82 G. Eridani
3 7 Gliese 1061, YZ Ceti, Wolf 1061, Gliese 581, 61 Virginis, Gliese 433, Gliese 357
2 19
1 28
Total 59
Distribution of nearby planet-hosting systems
Distance
(light-years)
No. of known
star systems
No. of known
stars
No. of stars
hosting known
exoplanets
Percentage of
stars hosting
exoplanets
< 5 1 3 1 33%
5–10 8 11 3 27%
10–15 31 43 16 37%
15–20 57 77 13 17%
20–25 55 78 11 14%
25–32.6 ? ~200 18 ~9%
Total >413[104] 62 <15.0%
Systems visible with
the naked eye?
[note 3]
Visible host star? Systems
Yes (V < 6.5) 9
No (V > 6.5) 50

Exoplanets

Exoplanets by minimum estimated mass
Type Mass range[105] No.
Terran 0.5–5 M 46
Superterran 5–10 M 24
Neptunian 10–50 M 28
Jovian 50–600 M 10
Superjovian >600 M 3
Total 111
Exoplanets by orbital radius
Orbital radius No. Notes
< 0.4 AU 82 Mercury orbits at 0.39 AU
0.4–1.0 AU 16 Earth orbits at 1.0 AU
1.0–5 AU 11
> 5 AU 2 Jupiter orbits at 5.2 AU
Exoplanets by orbital period
Orbital period No. Notes
< 90 days 75 Mercury takes 88 days
90–365 days 17
1–10 years 14 Jupiter takes 11.9 years
> 10 years 5
Exoplanets by orbital eccentricity
Orbital eccentricity No. Notes
< 0.02 16 Earth's is 0.0167
0.02–0.20 78
Mercury's is 0.205
> 0.20 15
Exoplanets by discovery year
Year No.
1998 1
2000 2
2004 1
2005 2
2006 2
2007 3
2008 1
2009 6
2010 3
2011 5
2012 1
2014 5
2015 9
2016 1
2017 15
2018 5
2019 38
2020 9
2021 0

See also

Notes

  1. Listed values are primarily taken from NASA Exoplanet Archive,[4] but other databases include a few additional exoplanet entries tagged as "Confirmed" that have yet to be compiled into the NASA archive. Such databases include:
    "Exoplanet Catalog". The Extrasolar Planets Encyclopaedia. Full table.
    "Exoplanets Data Explorer". Exoplanet Orbit Database. California Planet Survey. Click the "+" button to visualize additional parameters.
    "Open Exoplanet Catalogue". Click the "Show options" to visualize additional parameters. Archived from the original on 2017-09-02. Retrieved 2015-02-14.
  2. For reference, the 104th closest known star system in November 2016 was 82 Eridani (19.7 ly).[5]
  3. According to the Bortle scale, an astronomical object is visible to the naked eye under "typical" dark-sky conditions in a rural area if it has an apparent magnitude smaller than +6.5. To the unaided eye, the limiting magnitude is +7.6 to +8.0 under "excellent" dark-sky conditions (with effort).[7]
  4. The star Epsilon Eridani was named Ran (after Rán, the Norse goddess of the sea), and the planet Epsilon Eridani b was named AEgir (after Ægir, Rán's husband),[10] while the planet Fomalhaut b was named Dagon (after Dagon, an ancient Syrian “fish god”[11]).[12]
  5. Exoplanet naming convention assigns uncapitalized letters starting from b to each planet based on chronological order of their initial report, and in increasing order of distance from the parent star for planets reported at the same time. Omitted letters signify planets that have yet to be confirmed, or planets that have been retracted altogether.
  6. Most reported exoplanet masses have very large error margins (typically, between 10% and 30%). The mass of an exoplanet has generally been inferred from measurements on changes in the radial velocity of the host star, but this kind of measurement only allows for an estimate on the exoplanet's orbital parameters, but not on their orbital inclination (i). As such, most exoplanets only have an estimated minimum mass (Mreal*sin(i)), where their true masses are statistically expected to come close to this minimum, with only about 13% chance for the mass of an exoplanet to be more than double its minimum mass.[13]
  7. The star referred to as GJ 9066 in Feng et al. 2020 is the same as GJ 83.1 in Tuomi et al. 2019; see SIMBAD. Planets b and c are so called by Feng et al. 2020; in Tuomi et al. 2019 they are designated d and b, respectively. The planet designated c in Tuomi et al. 2019 was not detected by Feng et al. 2020, so it's considered a candidate here.

References

  1. Harrington, J. D.; Villard, Ray (2013-08-01). "NASA's Hubble Reveals Rogue Planetary Orbit For Fomalhaut". NASA. Archived from the original on 2015-11-06. Retrieved 2015-09-18.
  2. Gáspár, András; Rieke, George H. (April 20, 2020). "New HST data and modeling reveal a massive planetesimal collision around Fomalhaut". PNAS. 117 (18): 9712–9722. arXiv:2004.08736. Bibcode:2020PNAS..117.9712G. doi:10.1073/pnas.1912506117. PMC 7211925. PMID 32312810. S2CID 215827666.
  3. Schneider, Jean. "Interactive Extra-solar Planets Catalog". The Extrasolar Planets Encyclopaedia. Exoplanet.eu. Archived from the original on 2012-02-08. Retrieved 2018-03-20.
  4. "NASA Exoplanet Archive—Confirmed Planets". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  5. Johnston, Robert (2014-11-02). "List of Nearby Stars: To 21 light years". Johnstonsarchive.net. Archived from the original on 2015-10-16. Retrieved 2015-09-17.
  6. "Stars within 10 parsecs". Solstation.com. 2014-04-25. Archived from the original on 2017-10-26. Retrieved 2018-03-22.
  7. Bortle, John E. (2001). "Light Pollution And Astronomy: The Bortle Dark-Sky Scale". Sky & Telescope. Archived from the original on 2009-03-23. Retrieved 2014-05-20.
  8. Powell, Richard (2006). "Stars within 50 light years". An Atlas of the Universe. Archived from the original on 2014-06-27. Retrieved 2014-05-17.
  9. "The Habitable Exoplanets Catalog". Planetary Habitability Laboratory. University of Puerto Rico in Arecibo. 2015-09-01. Archived from the original on 2016-01-09. Retrieved 2015-09-17.
  10. "epsilon Eridani". NameExoWorlds. International Astronomical Union. Archived from the original on 2018-02-15. Retrieved 2018-05-14.
  11. "Fomalhaut (alpha Piscis Austrini)". Nameexoworlds. International Astronomical Union. Archived from the original on 2017-04-30. Retrieved 2018-05-14.
  12. "Final Results of NameExoWorlds Public Vote Released" (Press release). International Astronomical Union. 2015-12-15. Archived from the original on 2018-05-15. Retrieved 2018-03-17.
  13. Cumming, Andrew; Butler, R. Paul; Marcy, Geoffrey W.; et al. (2008). "The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets". Publications of the Astronomical Society of the Pacific. 120 (867): 531–554. arXiv:0803.3357. Bibcode:2008PASP..120..531C. doi:10.1086/588487. S2CID 10979195.
  14. Anglada-Escudé, Guillem; Amado, Pedro J.; Barnes, John; Berdiñas, Zaira M.; Butler, R. Paul; Coleman, Gavin A. L.; de la Cueva, Ignacio; Dreizler, Stefan; Endl, Michael; Giesers, Benjamin; Jeffers, Sandra V.; Jenkins, James S.; Jones, Hugh R. A.; Kiraga, Marcin; Kürster, Martin; López-González, Marίa J.; Marvin, Christopher J.; Morales, Nicolás; Morin, Julien; Nelson, Richard P.; Ortiz, José L.; Ofir, Aviv; Paardekooper, Sijme-Jan; Reiners, Ansgar; Rodríguez, Eloy; Rodrίguez-López, Cristina; Sarmiento, Luis F.; Strachan, John P.; Tsapras, Yiannis; Tuomi, Mikko; Zechmeister, Mathias (August 25, 2016). "A terrestrial planet candidate in a temperate orbit around Proxima Centauri" (PDF). Nature. 536 (7617): 437–440. arXiv:1609.03449. Bibcode:2016Natur.536..437A. doi:10.1038/nature19106. PMID 27558064. S2CID 4451513.
  15. Damasso, Mario; Del Sordo, Fabio; Anglada-Escudé, Guillem; et al. (15 January 2020). "A low-mass planet candidate orbiting Proxima Centauri at a distance of 1.5 AU". Science Advances. 6 (3). eaax7467. Bibcode:2020SciA....6.7467D. doi:10.1126/sciadv.aax7467. PMC 6962037. PMID 31998838.
  16. Kervella, Pierre; Arenou, Frédéric; Schneider, Jean (2020). "Orbital inclination and mass of the exoplanet candidate Proxima c". Astronomy & Astrophysics. 635: L14. arXiv:2003.13106. Bibcode:2020A&A...635L..14K. doi:10.1051/0004-6361/202037551. ISSN 0004-6361. S2CID 214713486.
  17. Benedict, G. Fritz; McArthur, Barbara E. (16 June 2020). "A Moving Target—Revising the Mass of Proxima Centauri c". Research Notes of the AAS. 4 (6): 86. Bibcode:2020RNAAS...4...86B. doi:10.3847/2515-5172/ab9ca9.
  18. Suárez Mascareño, A.; Faria, J. P.; et al. (2020). "Revisiting Proxima with ESPRESSO". Astronomy & Astrophysics. 639: A77. arXiv:2005.12114. Bibcode:2020A&A...639A..77S. doi:10.1051/0004-6361/202037745. ISSN 0004-6361.
  19. Ribas, I.; Tuomi, M.; Reiners, A.; Butler, R. P.; Morales, J. C.; Perger, M.; Dreizler, S.; Rodríguez-López, C.; González Hernández, J. I.; Rosich, A.; Feng, F.; Trifonov, T.; Vogt, S. S.; Caballero, J. A.; Hatzes, A.; Herrero, E.; Jeffers, S. V.; Lafarga, M.; Murgas, F.; Nelson, R. P.; Rodríguez, E.; Strachan, J. B. P.; Tal-Or, L.; Teske, J.; Toledo-Padrón, B.; Zechmeister, M.; Quirrenbach, A.; Amado, P. J.; Azzaro, M.; Béjar, V. J. S.; Barnes, J. R.; Berdiñas, Z. M.; Burt, J.; Coleman, G.; Cortés-Contreras, M.; Crane, J.; Engle, S. G.; Guinan, E. F.; Haswell, C. A.; Henning, Th.; Holden, B.; Jenkins, J.; Jones, H. R. A.; Kaminski, A.; Kiraga, M.; Kürster, M.; Lee, M. H.; López-González, M. J.; Montes, D.; Morin, J.; Ofir, A.; Pallé, E.; Rebolo, R.; Reffert, S.; Schweitzer, A.; Seifert, W.; Shectman, S. A.; Staab, D.; Street, R. A.; Suárez Mascareño, A.; Tsapras, Y.; Wang, S. X.; Anglada-Escudé, G. (2018). "A candidate super-Earth planet orbiting near the snow line of Barnard's star" (PDF). Nature. 563 (7731): 365–368. arXiv:1811.05955. Bibcode:2018Natur.563..365R. doi:10.1038/s41586-018-0677-y. hdl:2299/21132. ISSN 0028-0836. OCLC 716177853. PMID 30429552. S2CID 53304502.
  20. Barnes, J. R.; Kiraga, M.; Diaz, M.; Berdiñas, Z.; Jenkins, J. S.; Keiser, S.; Thompson, I.; Crane, J. D.; Shectman, S. A.; Teske, J. K.; Holden, B.; Laughlin, G.; Burt, J.; Vogt, S. S.; Arriagada, P.; Butler, R. P.; Anglada-Escudé, G.; Jones, H. R. A.; Tuomi, M. (11 June 2019). "Frequency of planets orbiting M dwarfs in the Solar neighbourhood". arXiv:1906.04644 [astro-ph.EP].
  21. Stock, S.; et al. (November 2020). "The CARMENES search for exoplanets around M dwarfs. Three temperate-to-warm super-Earths". Astronomy & Astrophysics. 643: A112. arXiv:2010.00474. Bibcode:2020A&A...643A.112S. doi:10.1051/0004-6361/202038820.
  22. "eps Eri". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2020-10-26.
  23. "eps Eridani c". The Extrasolar Planet Encyclopaedia. Exoplanet.eu. Archived from the original on 2014-02-23. Retrieved 2014-05-17.
  24. Mawet, Dimitri; et al. (2019). "Deep Exploration of ϵ Eridani with Keck Ms-band Vortex Coronagraphy and Radial Velocities: Mass and Orbital Parameters of the Giant Exoplanet". The Astronomical Journal. 157 (1): 33. doi:10.3847/1538-3881/aaef8a.
  25. Jeffers, S. V.; Dreizler, S.; et al. (June 2020). "A multiplanet system of super-Earths orbiting the brightest red dwarf star GJ 887". Science. 368 (6498): 1477–1481. arXiv:2006.16372. Bibcode:2020Sci...368.1477J. doi:10.1126/science.aaz0795. ISSN 0036-8075. PMID 32587019. S2CID 220075207.
  26. "Ross 128". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  27. Howard, Andrew W.; et al. (October 2014). "The NASA-UC-UH ETA-Earth Program. IV. A Low-mass Planet Orbiting an M Dwarf 3.6 PC from Earth". The Astrophysical Journal. 794 (1): 9. arXiv:1408.5645. Bibcode:2014ApJ...794...51H. doi:10.1088/0004-637X/794/1/51. S2CID 17361592. 51.
  28. Trifonov, T; Kürster, M; Zechmeister, M; et al. (2018). "The CARMENES search for exoplanets around M dwarfs". Astronomy & Astrophysics. 609 (117): A117. arXiv:1710.01595. Bibcode:2018A&A...609A.117T. doi:10.1051/0004-6361/201731442. S2CID 119340839.
  29. Pinamonti, M.; Damasso, M.; Marzari, F.; Sozzetti, A.; Desidera, S.; Maldonado, J.; Scandariato, G.; Affer, L.; Lanza, A. F.; Bignamini, A.; Bonomo, A. S.; Borsa, F.; Claudi, R.; Cosentino, R.; Giacobbe, P.; González-Álvarez, E.; González Hernández, J. I.; Gratton, R.; Leto, G.; Malavolta, L.; Martinez Fiorenzano, A.; Micela, G.; Molinari, E.; Pagano, I.; Pedani, M.; Perger, M.; Piotto, G.; Rebolo, R.; Ribas, I.; et al. (2018). "The HADES RV Programme with HARPS-N at TNG. VIII. GJ15A: A multiple wide planetary system sculpted by binary interaction". Astronomy and Astrophysics. 617: A104. arXiv:1804.03476. Bibcode:2018A&A...617A.104P. doi:10.1051/0004-6361/201732535. S2CID 54990041.
  30. "tau Cet". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  31. "tau Ceti". Open Exoplanet Catalogue. Archived from the original on 2014-03-14. Retrieved 2014-05-17.
  32. "tau Cet b". The Extrasolar Planet Encyclopaedia. Exoplanet.eu. Archived from the original on 2017-11-07. Retrieved 2018-03-22.
  33. "tau Cet c". The Extrasolar Planet Encyclopaedia. Exoplanet.eu. Archived from the original on 2017-12-01. Retrieved 2018-03-22.
  34. "tau Cet d". The Extrasolar Planet Encyclopaedia. Exoplanet.eu. Archived from the original on 2017-12-01. Retrieved 2018-03-22.
  35. Endl, M.; Kürster, M.; Els, S.; Hatzes, A. P.; Cochran, W. D.; Dennerl, K.; Döbereiner, S. (2002). "The planet search program at the ESO Coudé Echelle spectrometer. III. The complete Long Camera survey results". Astronomy and Astrophysics. 392 (2): 671–690. arXiv:astro-ph/0207512. Bibcode:2002A&A...392..671E. doi:10.1051/0004-6361:20020937. S2CID 17393347.
  36. Feng, Fabo; Tuomi, Mikko; Jones, Hugh R. A. (23 March 2018). "Detection of the closest Jovian exoplanet in the Epsilon Indi triple system". arXiv:1803.08163 [astro-ph.EP].
  37. Feng, Fabo; Anglada-Escudé, Guillem; Tuomi, Mikko; Jones, Hugh R. A.; Chanamé, Julio; Butler, Paul R.; Janson, Markus (14 October 2019). "Detection of the nearest Jupiter analog in radial velocity and astrometry data". Monthly Notices of the Royal Astronomical Society. 490 (4): 5002–5016. arXiv:1910.06804. Bibcode:2019MNRAS.490.5002F. doi:10.1093/mnras/stz2912. S2CID 204575783.
  38. Anglada-Escudé, G.; Reiners, A.; Pallé, E.; Ribas, I.; Berdiñas, Z. M.; Rodríguez López, C.; Morales, N.; López-González, M. J.; Hambsch, F-J; Strachan, J B P.; Hidalgo Soto, D.; Lalitha, S.; Coleman, G A L.; Haswell, C. A.; Barnes, J. R.; Zechmeister, M.; Rodríguez, E.; Jeffers, S. V.; Dreizler, S.; Anglada-Escudé, G. (2020). "RedDots: A temperate 1.5 Earth-mass planet candidate in a compact multiterrestrial planet system around GJ 1061". Monthly Notices of the Royal Astronomical Society. 493 (1): 536–550. arXiv:1908.04717. Bibcode:2020MNRAS.493..536D. doi:10.1093/mnras/staa248. S2CID 199551874.
  39. "YZ Cet". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  40. "YZ Cet e". The Extrasolar Planet Encyclopaedia. Exoplanet.eu. 2017-08-15. Archived from the original on 2018-03-19. Retrieved 2018-03-22.
  41. "GJ 273". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  42. Caballero, J. A.; Reiners, A.; Ribas, I.; Dreizler, S.; Zechmeister, M.; et al. (12 June 2019). "The CARMENES search for exoplanets around M dwarfs. Two temperate Earth-mass planet candidates around Teegarden's Star" (PDF). Astronomy & Astrophysics. 627: A49. arXiv:1906.07196. Bibcode:2019A&A...627A..49Z. doi:10.1051/0004-6361/201935460. ISSN 0004-6361. S2CID 189999121.
  43. "Kapteyn". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  44. "Kapteyn's b". The Extrasolar Planet Encyclopaedia. Exoplanet.eu. 2015-05-13. Archived from the original on 2017-12-01. Retrieved 2018-03-22.
  45. "Wolf 1061". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  46. Feng, Fabo; et al. (October 2020). "Search for Nearby Earth Analogs. III. Detection of 10 New Planets, 3 Planet Candidates, and Confirmation of 3 Planets around 11 Nearby M Dwarfs". The Astrophysical Journal Supplement Series. 250 (2): 29. arXiv:2008.07998. Bibcode:2020ApJS..250...29F. doi:10.3847/1538-4365/abb139.
  47. "GJ 674". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  48. "GJ 674 b". The Extrasolar Planet Encyclopaedia. Exoplanet.eu. 2007-04-25. Archived from the original on 2014-02-10. Retrieved 2014-05-17.
  49. "GJ 687". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  50. "GJ 876". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  51. "GJ 832". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  52. Ma, Bo; Ge, Jian; Muterspaugh, Matthew; Singer, Michael A; Henry, Gregory W; González Hernández, Jonay I; Sithajan, Sirinrat; Jeram, Sarik; Williamson, Michael; Stassun, Keivan; Kimock, Benjamin; Varosi, Frank; Schofield, Sidney; Liu, Jian; Powell, Scott; Cassette, Anthony; Jakeman, Hali; Avner, Louis; Grieves, Nolan; Barnes, Rory; Zhao, Bo; Gilda, Sankalp; Grantham, Jim; Stafford, Greg; Savage, David; Bland, Steve; Ealey, Brent (October 2018). "The first super-Earth detection from the high cadence and high radial velocity precision Dharma Planet Survey". Monthly Notices of the Royal Astronomical Society. 480 (2): 2411–2422. arXiv:1807.07098. Bibcode:2018MNRAS.480.2411M. doi:10.1093/mnras/sty1933. S2CID 54871108.
  53. "GJ 3323". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  54. Butler, R. Paul; Vogt, Steven S.; Laughlin, Gregory; Burt, Jennifer A.; Rivera, Eugenio J.; Tuomi, Mikko; Teske, Johanna; Arriagada, Pamela; Diaz, Matias; Holden, Brad; Keiser, Sandy (12 April 2017). "The LCES HIRES/Keck Precision Radial Velocity Exoplanet Survey". The Astronomical Journal. 153 (5): 208. arXiv:1702.03571. Bibcode:2017AJ....153..208B. doi:10.3847/1538-3881/aa66ca. ISSN 1538-3881. S2CID 14954371.
  55. Feng, Fabo; Butler, R. Paul; Shectman, Stephen A.; Crane, Jeffrey D.; Vogt, Steve; Chambers, John; Jones, Hugh R. A.; Wang, Sharon Xuesong; Teske, Johanna K.; Burt, Jenn; Díaz, Matías R.; Thompson, Ian B. (8 January 2020). "Search for Nearby Earth Analogs. II. Detection of Five New Planets, Eight Planet Candidates, and Confirmation of Three Planets around Nine Nearby M Dwarfs". The Astrophysical Journal Supplement Series. 246 (1): 11. arXiv:2001.02577. Bibcode:2020ApJS..246...11F. doi:10.3847/1538-4365/ab5e7c. S2CID 210064560.
  56. Kaminski, A.; Trifonov, T.; Caballero, J. A.; Quirrenbach, A.; Ribas, I.; Reiners, A.; Amado, P. J.; Zechmeister, M.; Dreizler, S.; Perger, M.; Tal-Or, L.; Bonfils, X.; Mayor, M.; Astudillo-Defru, N.; Bauer, F. F.; Béjar, V. J. S.; Cifuentes, C.; Colomé, J.; Cortés-Contreras, M.; Delfosse, X.; Díez-Alonso, E.; Forveille, T.; Guenther, E. W.; Hatzes, A. P.; Henning, Th; Jeffers, S. V.; Kürster, M.; Lafarga, M.; Luque, R.; Mandel, H.; Montes, D.; Morales, J. C.; Passegger, V. M.; Pedraz, S.; Reffert, S.; Sadegi, S.; Schweitzer, A.; Seifert, W.; Stahl, O.; Udry, S. (3 August 2018). "The CARMENES search for exoplanets around M dwarfs. A Neptune-mass planet traversing the habitable zone around HD 180617". Astronomy & Astrophysics. 618: A115. arXiv:1808.01183. Bibcode:2018A&A...618A.115K. doi:10.1051/0004-6361/201833354. S2CID 118980171.
  57. "HD 20794". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  58. "HD 20794 f". The Extrasolar Planet Encyclopaedia. Exoplanet.eu. Archived from the original on 2018-03-20. Retrieved 2018-03-22.
  59. "HD 20794 g". The Extrasolar Planet Encyclopaedia. Exoplanet.eu. Archived from the original on 2018-03-20. Retrieved 2018-03-22.
  60. "GJ 581". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  61. "GJ 581 d". The Extrasolar Planet Encyclopaedia. Exoplanet.eu. Archived from the original on 2017-12-01. Retrieved 2018-03-22.
  62. "GJ 581 f". The Extrasolar Planet Encyclopaedia. Exoplanet.eu. Archived from the original on 2018-03-20. Retrieved 2018-03-22.
  63. "GJ 581 g". The Extrasolar Planet Encyclopaedia. Exoplanet.eu. Archived from the original on 2018-03-24. Retrieved 2018-03-22.
  64. González-Álvarez, E.; Osorio, M. R. Zapatero; Caballero, J. A.; Sanz-Forcada, J.; Béjar, V. J. S.; González-Cuesta, L.; Dreizler, S.; Bauer, F. F.; Rodríguez, E.; Tal-Or, L.; Zechmeister, M.; Montes, D.; López-González, M. J.; Ribas, I.; Reiners, A.; Quirrenbach, A.; Amado, P. J.; Anglada-Escudé, G.; Azzaro, M.; Cortés-Contreras, M.; Hatzes, A. P.; Henning, T.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Morales, J. C.; Pallé, E.; Perger, M.; Schmitt, J. H. M. M. (29 March 2020). "The CARMENES search for exoplanets around M dwarfs. A super-Earth planet orbiting HD 79211 (GJ 338 B)". Astronomy & Astrophysics. A93: 637. arXiv:2003.13052. Bibcode:2020A&A...637A..93G. doi:10.1051/0004-6361/201937050. S2CID 214714124.
  65. "GJ 625". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  66. Vogt, Steven S.; et al. (November 2015). "Six Planets Orbiting HD 219134". The Astrophysical Journal. 814 (1): 12. arXiv:1509.07912. Bibcode:2015ApJ...814...12V. doi:10.1088/0004-637X/814/1/12.
  67. Johnson, Marshall C.; et al. (April 2016). "A 12-year Activity Cycle for the Nearby Planet Host Star HD 219134". The Astrophysical Journal. 821 (2): 74. arXiv:1602.05200. Bibcode:2016ApJ...821...74J. doi:10.3847/0004-637X/821/2/74.
  68. Gillon, Michaël; et al. (2017). "Two massive rocky planets transiting a K-dwarf 6.5 parsecs away". Nature Astronomy. 1. 0056. arXiv:1703.01430. Bibcode:2017NatAs...1E..56G. doi:10.1038/s41550-017-0056.
  69. Almenara, Jose-Manuel; Berlind, Perry; Bouchy, Franois; Burke, Chris J.; Delfosse, Xavier; D'iaz, Rodrigo F.; Dressing, Courtney D.; Esquerdo, Gilbert A.; Figueira, Pedro; Forveille, Thierry; Fur'esz, G'abor; Henze, Christopher E.; Jao, Wei-Chun; L'epine, S'ebastien; Levine, Alan M.; Lovis, Christophe; Mink, Jessica; Muirhead, Philip S.; Murgas, Felipe; Pepe, Francesco; Tenenbaum, Peter; Teske, Johanna K.; Twicken, Dr Joseph D.; Udry, St'ephane; Jenkins, Jon M.; Winn, Joshua N.; Seager, Sara; Latham, David W.; Vanderspek, Roland; Ricker, George R.; Bonfils, Xavier; Winston, Elaine; Diamond-Lowe, Hannah; Henry, Todd J.; Vrijmoet, Eliot; Eastman, Jason D.; Horch, Elliott P.; Astudillo-Defru, Nicola; Charbonneau, David; Irwin, Jonathan M.; Medina, Amber A.; Winters, Jennifer G. (24 June 2019). "Three Red Suns in the Sky: A Transiting, Terrestrial Planet in a Triple M Dwarf System at 6.9 Parsecs". arXiv:1906.10147. doi:10.3847/1538-3881/ab364d. S2CID 195584444. Cite journal requires |journal= (help)
  70. "GJ 667 C". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  71. "GJ 667 C d". The Extrasolar Planet Encyclopaedia. Exoplanet.eu. Archived from the original on 2017-12-01. Retrieved 2018-03-22.
  72. "GJ 667 C h". The Extrasolar Planet Encyclopaedia. Exoplanet.eu. 2016-02-23. Archived from the original on 2017-12-01. Retrieved 2018-03-22.
  73. Vedantham, H. K.; Callingham, J. R.; Shimwell, T. W.; Tasse, C.; Pope, B. J. S.; Bedell, M.; Snellen, I.; Best, P.; Hardcastle, M. J.; Haverkorn, M.; Mechev, A.; O’Sullivan, S. P.; Röttgering, H. J. A.; White, G. J. (June 2020). "Coherent radio emission from a quiescent red dwarf indicative of star–planet interaction". Nature Astronomy. 4 (6): 577–583. arXiv:2002.08727. doi:10.1038/s41550-020-1011-9. |access-date= requires |url= (help)
  74. Mahadevan, Suvrath; Stefánsson, Guðmundur; Robertson, Paul; Terrien, Ryan C.; Ninan, Joe P.; Holcomb, Rae J.; Halverson, Samuel; Cochran, William D.; Kanodia, Shubham; Ramsey, Lawrence W.; Wolszczan, Alexander; Endl, Michael; Bender, Chad F.; Diddams, Scott A.; Fredrick, Connor; Hearty, Fred; Monson, Andrew; Metcalf, Andrew J.; Roy, Arpita; Schwab, Christian (3 February 2021). "The Habitable-zone Planet Finder Detects a Terrestrial-mass Planet Candidate Closely Orbiting Gliese 1151: The Likely Source of Coherent Low-frequency Radio Emission from an Inactive Star". arXiv:2102.02233 [astro-ph]. Retrieved 5 February 2021.
  75. Affer, L.; Damasso, M.; Micela, G.; Poretti, E.; Scandariato, G.; Maldonado, J.; Lanza, A. F.; Covino, E.; Rubio, A. Garrido; Hernandez, J. I. Gonzalez; Gratton, R.; Leto, G.; Maggio, A.; Perger, M.; Sozzetti, A.; Mascareno, A. Suarez; Bonomo, A. S.; Borsa, F.; Claudi, R.; Cosentino, R.; Desidera, S.; Molinari, E.; Pedani, M.; Pinamonti, M.; Rebolo, R.; Ribas, I.; Toledo-Padron, B. (16 January 2019). "HADES RV programme with HARPS-N at TNG. X. A super-Earth around the M dwarf Gl686". Astronomy & Astrophysics. A193: 622. arXiv:1901.05338. doi:10.1051/0004-6361/201834868. S2CID 118863481.
  76. "61 Vir". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  77. Bauer, F. F.; Zechmeister, M.; Kaminski, A.; López, C. Rodríguez; Caballero, J. A.; Azzaro, M.; Stahl, O.; Kossakowski, D.; Quirrenbach, A.; Jarque, S. Becerril; Rodríguez, E.; Amado, P. J.; Seifert, W.; Reiners, A.; Schäfer, S.; Ribas, I.; Béjar, V. J. S.; Cortés-Contreras, M.; Dreizler, S.; Hatzes, A.; Henning, T.; Jeffers, S. V.; Kürster, M.; Lafarga, M.; Montes, D.; Morales, J. C.; Schmitt, J. H. M. M.; Schweitzer, A.; Solano, E. (2 June 2020). "The CARMENES search for exoplanets around M dwarfs. Measuring precise radial velocities in the near infrared: the example of the super-Earth CD Cet b". Astronomy and Astrophysics. 640: A50. arXiv:2006.01684. Bibcode:2020A&A...640A..50B. doi:10.1051/0004-6361/202038031. S2CID 219179889.
  78. "HD 192310". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  79. "GJ 849". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  80. "GJ 433". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  81. "HD 102365". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  82. Wohler, B.; Winn, J. W.; Wang, S. X.; Twicken, J. D.; Teske, J.; Tamura, M.; Shectman, S. A.; Rowden, P.; Ricker, G. R.; Ribas, I.; Pedraz, S.; Nagel, E.; Murgas, F.; Morales, J. C.; Montañés-Rodríguez, P.; McDermott, S.; Latham, D. W.; Lafarga, M.; Kotani, T.; Klahr, H.; Kaminski, A.; Jenkins, J. M.; Feng, F.; Dynes, S.; Dressing, C. D.; Crane, J. D.; Collins, K. I.; Collins, K. A.; Chen, G.; Caldwell, D. A.; Butler, R. P.; Burt, J.; Burke, C. J.; Bluhm, P.; Bauer, F. F.; Batalha, N. E.; Anderson, D. R.; Amado, P. J.; Zechmeister, M.; Osorio, M. R. Zapatero; Trifonov, T.; Stock, S.; Schlecker, M.; Rodríguez-López, C.; Reiners, A.; Reffert, S.; Quirrenbach, A.; Parviainen, H.; Oshagh, M.; Ofir, A.; Nowak, G.; Narita, N.; Montes, D.; Molaverdikhani, K.; Kürster, M.; Kaltenegger, L.; Jeffers, S. V.; Henning, T.; Hellier, C.; Hatzes, A.; Díez-Alonso, E.; Cortés-Contreras, M.; Caballero, J. A.; Béjar, V. J. S.; Anglada-Escudé, G.; Espinoza, N.; Kemmer, J.; Dreizler, S.; Kossakowski, D.; Pallé, E.; Luque, R. (29 April 2019). "A planetary system around the nearby M dwarf Gl 357 including a transiting hot Earth-sized planet optimal for atmospheric characterisation". Astronomy & Astrophysics. A39: 628. arXiv:1904.12818. Bibcode:2019A&A...628A..39L. doi:10.1051/0004-6361/201935801. S2CID 139102184.
  83. "HD 285968". NASA Exoplanet Science Institute. California Institute of Technology. Retrieved 2018-03-22.
  84. "GJ 176 c". The Extrasolar Planet Encyclopaedia. Exoplanet.eu. 2010-12-17. Archived from the original on 2014-02-23. Retrieved 2014-05-20.
  85. Morales, J. C.; Mustill, A. J.; Ribas, I.; Davies, M. B.; Reiners, A.; Bauer, F. F.; Kossakowski, D.; Herrero, E.; Rodríguez, E.; López-González, M. J.; Rodríguez-López, C.; Béjar, V. J. S.; González-Cuesta, L.; Luque, R.; Pallé, E.; Perger, M.; Baroch, D.; Johansen, A.; Klahr, H.; Mordasini, C.; Anglada-Escudé, G.; Caballero, J. A.; Cortés-Contreras, M.; Dreizler, S.; Lafarga, M.; Nagel, E.; Passegger, V. M.; Reffert, S.; Rosich, A.; et al. (27 September 2019). "A giant exoplanet orbiting a very-low-mass star challenges planet formation models". Science. 365 (6460): 1441–1445. arXiv:1909.12174. Bibcode:2019Sci...365.1441M. doi:10.1126/science.aax3198. ISSN 0036-8075. PMID 31604272. S2CID 202888425.
  86. Plavchan, Peter; Barclay, Thomas; Gagné, Jonathan; et al. (2020). "A planet within the debris disk around the pre-main-sequence star AU Microscopii". Nature. 582 (7813): 497–500. arXiv:2006.13248. Bibcode:2020Natur.582..497P. doi:10.1038/s41586-020-2400-z. PMC 7323865. PMID 32581383. S2CID 220042005.
  87. Martioli, E.; et al. (24 December 2020). "New constraints on the planetary system around the young active star AU Mic. Two transiting warm Neptunes near mean-motion resonance". arXiv:2012.13238 [astro-ph.EP].
  88. Lee, Rhodi (2015-09-18). "Want To Name An Exoplanet? Here's Your Chance". Tech Times. Archived from the original on 2015-09-07. Retrieved 2015-09-17.
  89. Bartlett, Jennifer L; Ianna, Philip A; Begam, Michael C (2009). "A Search for Astrometric Companions to Stars in the Southern Hemisphere". Publications of the Astronomical Society of the Pacific. 121 (878): 365. Bibcode:2009PASP..121..365B. doi:10.1086/599044.
  90. Rajpaul, Vinesh (19 October 2015). "Ghost in the time series: no planet for Alpha Cen B". Monthly Notices of the Royal Astronomical Society: Letters. 456: L6–L10. arXiv:1510.05598. Bibcode:2016MNRAS.456L...6R. doi:10.1093/mnrasl/slv164.
  91. Farihi, J.; Becklin, E. E.; Macintosh, B. A. (June 2004). "Mid-Infrared Observations of van Maanen 2: No Substellar Companion". Astrophysical Journal Letters. 608 (2): L109–L112. arXiv:astro-ph/0405245. Bibcode:2004ApJ...608L.109F. doi:10.1086/422502. S2CID 17166073.
  92. Heinze, A. N.; Hinz, Philip M.; Sivanandam, Suresh; et al. (May 2010). "Constraints on Long-period Planets from an L'- and M-band Survey of Nearby Sun-like Stars: Observations". The Astrophysical Journal. 714 (2): 1551–1569. arXiv:1003.5340. Bibcode:2010ApJ...714.1551H. doi:10.1088/0004-637X/714/2/1551. S2CID 119199321.
  93. Carleo, I.; et al. (June 2020). "The GAPS Programme at TNG. XXI. A GIARPS case study of known young planetary candidates: confirmation of HD 285507 b and refutation of AD Leonis b". Astronomy & Astrophysics. 638: A5. arXiv:2002.10562. Bibcode:2020A&A...638A...5C. doi:10.1051/0004-6361/201937369. S2CID 211296466.
  94. "VB 10 b". The Extrasolar Planet Encyclopaedia. Exoplanet.eu. Archived from the original on 2015-09-29. Retrieved 2015-09-17.
  95. Hurt, Spencer A.; Quinn, Samuel N.; Latham, David W.; Vanderburg, Andrew; Esquerdo, Gilbert A.; Calkins, Michael L.; Berlind, Perry; Angus, Ruth; Latham, Christian A.; Zhou, George (21 January 2021). "A decade of radial-velocity monitoring of Vega and new limits on the presence of planets". arXiv:2101.08801 [astro-ph]. Retrieved 25 January 2021.
  96. Boss, Alan P.; Butler, R. Paul; Hubbard, William B.; et al. (2007). "Working Group on Extrasolar Planets". Proceedings of the International Astronomical Union. 1 (T26A): 183. Bibcode:2007IAUTA..26..183B. doi:10.1017/S1743921306004509.
  97. "SCR 1845 b". The Extrasolar Planet Encyclopaedia. Exoplanet.eu. 2012-04-13. Archived from the original on 2015-10-01. Retrieved 2015-09-17.
  98. "SDSS 141624 b". The Extrasolar Planet Encyclopaedia. Exoplanet.eu. 2010-01-18. Archived from the original on 2014-02-23. Retrieved 2014-05-20.
  99. "WISE 1217+16A b". The Extrasolar Planet Encyclopaedia. Exoplanet.eu. Archived from the original on 2017-06-12. Retrieved 2014-05-17.
  100. Clavin, Whitney; Harrington, J. D. (2014-04-25). "NASA's Spitzer and WISE Telescopes Find Close, Cold Neighbor of Sun". NASA. Archived from the original on 2014-04-26. Retrieved 2015-09-17.
  101. Lucas, P. W.; Tinney, C. G.; Burningham, B.; et al. (2010). "The discovery of a very cool, very nearby brown dwarf in the Galactic plane". Monthly Notices of the Royal Astronomical Society. 408 (1): L56–L60. arXiv:1004.0317. Bibcode:2010MNRAS.408L..56L. doi:10.1111/j.1745-3933.2010.00927.x. S2CID 16032606.
  102. Cushing, Michael C.; Kirkpatrick, J. Davy; Gelino, Christopher R.; et al. (2011). "The Discovery of Y Dwarfs using Data from the Wide-field Infrared Survey Explorer (WISE)". The Astrophysical Journal. 743 (1): 50. arXiv:1108.4678. Bibcode:2011ApJ...743...50C. doi:10.1088/0004-637X/743/1/50. S2CID 286881.
  103. "Astronomers discover a nearby free-range planet with incredible magne".
  104. "Stars within 10 parsecs".
  105. "HEC: Periodic Table of Exoplanets". Planetary Habitability Laboratory. University of Puerto Rico at Arecibo. 2014-04-17. Archived from the original on 2014-07-03. Retrieved 2014-05-17.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.