July 1982 lunar eclipse

The moon passed through the center of the Earth's shadow.

Total Lunar Eclipse
July 6, 1982
(No photo)

The moon passes west to east (right to left) across the Earth's umbral shadow, shown in hourly intervals.
Series129 (36 of 71)
Gamma-0.0579
Duration (hr:mn:sc)
Totality1:45:44
Partial3:55:35
Penumbral6:13:51
Contacts (UTC)
P104:23:58
U105:33:07
U206:38:03
Greatest07:30:54
U308:23:47
U409:28:42
P410:37:49

A total lunar eclipse took place on July 6, 1982.

Visibility

It was seen completely over North and South America, seen rising over Australia, and setting over Western Africa.

There are seven eclipses in 1982, the maximum possible, including 4 partial solar eclipses: January 25, July 20, June 21, and December 15.

Lunar year series

Saros series

Lunar saros series 129, repeating every 18 years and 11 days, containing 71 events, has 11 total lunar eclipses. The first total lunar eclipse of this series was on May 24, 1910, and last will be on September 8, 2090. The two longest occurrence of this series were on July 6, 1982 and July 16, 2000 when totality lasted 106 minutes.

Greatest First

The greatest eclipse of the series occurred on 2000 Jul 16, lasting 106 minutes.
Penumbral Partial Total Central
1351 Jun 10 1513 Sep 15 1910 May 24 1946 Jun 14
Last
Central Total Partial Penumbral
2036 Aug 7 2090 Sep 8 2469 Apr 26 2613 Jul 24
1901–2100
1910 May 24 1928 Jun 3 1946 Jun 14
1964 Jun 25 1982 Jul 6 2000 Jul 16
2018 Jul 27 2036 Aug 7 2054 Aug 18
2072 Aug 28 2090 Sep 8

It last occurred on June 25, 1964 and will next occur on July 16, 2000.

This is the 36th member of Lunar Saros 129. The previous event was the June 1964 lunar eclipse. The next event is the July 2000 lunar eclipse. Lunar Saros 129 contains 11 total lunar eclipses between 1910 and 2090. Solar Saros 136 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series.

Inex series

The inex series repeats eclipses 20 days short of 29 years, repeating on average every 10571.95 days. This period is equal to 358 lunations (synodic months) and 388.5 draconic months. Saros series increment by one on successive Inex events and repeat at alternate ascending and descending lunar nodes.

This period is 383.6734 anomalistic months (the period of the Moon's elliptical orbital precession). Despite the average 0.05 time-of-day shift between subsequent events, the variation of the Moon in its elliptical orbit at each event causes the actual eclipse time to vary significantly. It is a part of Lunar Inex series 39.

All events in this series listed below and more are total lunar eclipses.

Inex series from 1000 to 2500 AD
Ascending node Descending node Ascending node Descending node
Saros Date Saros Date Saros Date Saros Date
96 1027 Apr 23 97 1056 Apr 2 98 1085 Mar 14 99 1114 Feb 21
100 1143 Feb 1 101 1172 Jan 13 102 1200 Dec 22 103 1229 Dec 2
104 1258 Nov 12 105 1287 Oct 22 106 1316 Oct 2 107 1345 Sep 12
108 1374 Aug 22 109 1403 Aug 2 110 1432 Jul 13 111 1461 Jun 22
112 1490 Jun 2 113 1519 May 14 114 1548 Apr 22 115 1577 Apr 2
116 1606 Mar 24 117 1635 Mar 3 118 1664 Feb 11 119 1693 Jan 22
120 1722 Jan 2 121 1750 Dec 13 122 1779 Nov 23 123 1808 Nov 3
124 1837 Oct 13 125 1866 Sep 24 126 1895 Sep 4 127 1924 Aug 14
128 1953 Jul 26
129 1982 Jul 6
130 2011 Jun 15
131 2040 May 26
132 2069 May 6
133 2098 Apr 15
134 2127 Mar 28 135 2156 Mar 7
136 2185 Feb 14 137 2214 Jan 27 138 2243 Jan 7 139 2271 Dec 17
140 2300 Nov 27 141 2329 Nov 7 142 2358 Oct 18 143 2387 Sep 28
144 2416 Sep 7 145 2445 Aug 17 146 2474 Jul 29

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[1] This lunar eclipse is related to two total solar eclipses of Solar Saros 136.

June 30, 1973 July 11, 1991

See also

Notes

  1. Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros

References

  • Bao-Lin Liu, Canon of Lunar Eclipses 1500 B.C.-A.D. 3000, 1992


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.