Physics education
Physics education refers to the methods currently used to teach physics. Physics Education Research refers to an area of pedagogical research that seeks to improve those methods. Historically, physics has been taught at the high school and college level primarily by the lecture method together with laboratory exercises aimed at verifying concepts taught in the lectures. These concepts are better understood when lectures are accompanied with demonstration, hand-on experiments, and questions that require students to ponder what will happen in an experiment and why. Students who participate in active learning for example with hands-on experiments learn through self-discovery. By trial and error they learn to change their preconceptions about phenomena in physics and discover the underlying concepts.
Ancient Greece
Aristotle wrote what is considered now as the first textbook of physics.[1] Aristotle's ideas were taught unchanged until the Late Middle Ages, when scientists started making discoveries that didn't fit them. For example, Copernicus' discovery contradicted Aristotle's idea of an Earth-centric universe. Aristotle's ideas about motion weren't displaced until the end of the 17th century, when Newton published his ideas.
Today's physics students keep thinking of physics concepts in Aristotelian terms, despite being taught only Newtonian concepts.[2]
Hong Kong
High schools
In Hong Kong, physics is a subject for public examination. Local students in Form 6 take the public exam of Hong Kong Diploma of Secondary Education (HKDSE).[3]
Compare to the other syllabus include GCSE, GCE etc which learn wider and boarder of different topics, the Hong Kong syllabus is learning more deeply and more challenges with calculations.[4] Topics are narrow down to a smaller amount compared to the A-level due to the insufficient teaching hours at secondary schools in Hong Kong, which include temperature, heat, internal energy, change of state, gases, position, motion, force, projectile motion, work, energy, power, momentum, uniform circular motion, gravitation, wave, light, sound, electrostatics, circuits, electromagnetism, radiation, radioactivity, atomic model, nuclear energy, universe, astronomy, stars, Rutherford model, photoelectric effect, Bohr model, particles, nanoscopic scale, building, transportation, renewable energy sources, eye, ear, non-ionizing radiation and ionizing radiation etc.[4]
Some schools only allow students choose physics as elective subject since Form 4,[5] some schools provide physics compulsory curriculum in Form 3 and then allow students to choose in Form 4,[6] and some other schools allow students choose physics as elective subject since Form 3.[7] Also, most schools use English language as the medium of instruction for physics,[6][7] whereas a few of the schools use Chinese language as the medium of instruction for physics.[5]
Other than having lectures in classrooms or laboratories, schools in Hong Kong organise outside-school activities to motivate students learning Physics.[8]
Universities
Pure Physics major programmes are provided in the Chinese University of Hong Kong (CUHK),[9] Hong Kong University of Science and Technology (HKUST)[10] and University of Hong Kong (HKU).[11] Topics include engineering physics, mechanics, thermodynamics, fluids, wave, optics, modern physics, laboratory, heat, electromagnetism, quantitative methods, computational physics, astronomy, astrophysics, classical mechanics, quantum mechanics, quantum information, statistical physics, theoretical physics, computer simulation, soft matter, practical electronics, contemporary physics, instrumentation, statistical mechanics, solid state physics, meteorology, nanoscience, optical physics, theory of relativity and particle physics etc.[12]
There are different approaches of delivering physics lectures in different universities in Hong Kong. In CUHK, most relevant knowledge including quantitative methods and computer simulation are learnt in the Department of Physics, which may let the students learn deeper into the concept that applied to the physics problems,[12] whereas in HKUST, quantitative methods and computer simulation are learnt by students in the courses delivered by Department of Mathematics and Department of Computer Science respectively which allow the students to learn boarder with knowledge of different aspects.[13]
There are also Enrichment Stream in Theoretical Physics offered by CUHK[14] and International Research Enrichment Track offered by HKUST.[13] In that stream, additional topics include astrophysics, particle physics, computational physics, and quantum physics. The practices of solving theoretical systems and the discussions of physical insight are very in-depth, which promote the graduates into a high level of the understanding of physics. However, the working opportunity for graduates with theoretical background in Hong Kong is too narrow. Most graduates pursue further studies overseas or become teachers.[14]
Moreover, Applied Physics major programmes are offered only in most other universities in Hong Kong.
Teaching strategies
Teaching strategies are the various techniques used by the teachers to facilitate the students with different learning styles. The different teaching strategies help teachers to develop critical thinking among students and effectively engaging them in the classroom. The selection of teaching strategies depends on the concept to be taught and also on the interest of the students.
Methods/Approaches for teaching physics
- Lecture Method: Lecturing is the one of the traditional way of teaching science. Since most teachers are taught by this method they continue to use the method in spite of many limitations as it is very much convenient. This method is teacher centric and the role of the lecturer is supreme. Lecture method is ineffective in developing critical thinking and scientific attitude among children.
- Recitation Method: In this method the role of student is more compared to the lecture method. This method is also known as Socratic Method where the teacher will ask questions and trigger the thoughts of the students. This method is very effective in developing higher order thinking in pupils. To apply this strategy the children should be partially informed about the content. Recitation method will be ineffective if the questions are not well prepared. This method is student centric.
- Demonstration Method: In this method the teacher perform certain experiments which students observe and put questions related to the experiment. After completion the teacher can ask questions to explain each and every step that is performed. This method is effective as science is not completely a theoretical subject.
- Lecture-cum-Demonstration method: As the title suggest it is the combination of two methods lecture method and demonstration method. It is a simple method where the teacher perform the experiment and explain simultaneously. By this method the teacher can provide more information in less time. But the learners only observe, they don't get hands on experience. And it is not possible to teach all topics by this method.[15]
Research
Number of Publications on Students' Ideas on the Bibliography by Duit (2005) | |
---|---|
Fragment | Publication |
| |
Mechanics (force)* | 792 |
Electricity (electrical circuit) | 444 |
Optics | 234 |
Particle model | 226 |
Thermal physics (heat/temp.) | 192 |
Energy | 176 |
Astronomy (Earth in space) | 121 |
Quantum physics | 77 |
Nonlinear systems (chaos) | 35 |
Sound | 28 |
Magnetism | 25 |
Relativity | 8 |
| |
* Predominant concept in brackets. Adapted from Duit, R., H. Niedderer and H. Schecker (see ref.). |
Physics education research is a sub-division within physics and is the study of how physics is taught and how students learn physics.
See also
- Balsa wood bridge
- Concept inventory
- Egg drop competition
- Feynman lectures
- Harvard Project Physics
- Learning Assistant Model
- List of physics concepts in primary and secondary education curricula
- Mousetrap car
- Physical Science Study Committee
- SAT Subject Test in Physics
- Physics Outreach
- Science education
- Mathematics education
- Engineering education
- Discipline-based education research
References
Wikimedia Commons has media related to Physics education. |
- Angelo Armenti (1992), The Physics of Sports, 1 (2, illustrated ed.), Springer, ISBN 978-0-88318-946-7 citing R.B Lindsay, Basic concepts of Physics (Van Nostrand Reinhold, New York, 1971), Appendix 1
- Ibrahim Abou Halloun; David Hestenes (1985), "Common sense concepts about motion" (PDF), American Journal of Physics, 53 (11): 1056–1065, Bibcode:1985AmJPh..53.1056H, doi:10.1119/1.14031, archived from the original (PDF) on September 11, 2006 as cited by many scholar books
- "Introduction to HKDSE Physics Examination". Hong Kong Examinations and Assessment Authority. Retrieved 1 May 2020.
- "Introduction to HKDSE Physics". Education Bureau. Retrieved 1 May 2020.
- "Example of a school in Hong Kong that allows students choose Physics as elective subject since Form 4, as well as an example of school use Chinese language to teach Physics" (PDF). New Asia Middle School. Retrieved 1 May 2020.
- "Example of a school in Hong Kong that provides Physics compulsory curriculum in Form 3, as well as an example of school use English language to teach Physics". St. Teresa Secondary School. Retrieved 1 May 2020.
- Example of a school in Hong Kong that allows students choose Physics as elective subject since Form 3 (PDF). YMCA of Hong Kong Christian College. 2019. Retrieved 1 May 2020.
- "Physics Corner". YMCA of Hong Kong Christian College. Retrieved 1 May 2020.
- "Department of Physics". Chinese University of Hong Kong. Retrieved 1 May 2020.
- "Department of Physics". Hong Kong University of Science and Technology. Retrieved 1 May 2020.
- "Department of Physics". University of Hong Kong. Retrieved 1 May 2020.
- "Course List". Chinese University of Hong Kong. Retrieved 1 May 2020.
- "BSc in Physics". Hong Kong University of Science and Technology. Retrieved 1 May 2020.
- "ADMISSION". Chinese University of Hong Kong. Retrieved 1 May 2020.
- vaidya (1999). Science teaching for the 21st century. Deep & Deep publications. pp. 181–201. ISBN 978-8171008117.
Further reading
PER Reviews:
- Robert J. Beichner (2009). "An Introduction to Physics Education Research". In Charles R. Henderson; Kathleen A. Harper (eds.). Getting Started in PER. Reviews in PER. 2.
- Lillian C. McDermott & Edward F. Redish (1999). "Resource Letter: PER-1: Physics Education Research". American Journal of Physics. 67 (9): 755–767. Bibcode:1999AmJPh..67..755M. doi:10.1119/1.19122. Archived from the original on 2013-01-12.
Miscellaneous:
- Duit, R., H. Niedderer and H. Schecker (2006). "Teaching Physics". Handbook of Research on Science Education: 606.CS1 maint: multiple names: authors list (link)
- Lillian C. McDermott (1993). "Guest Comment: How we teach and how students learn---A mismatch?". American Journal of Physics. 61 (4): 295–298. Bibcode:1993AmJPh..61..295M. doi:10.1119/1.17258. Archived from the original on 2013-01-12.
- H. Dahncke; et al. (2001). "Science education versus science in the academy: Questions---discussions---perspectives (in Research in Science Education -- Past, Present and Future)": 43–48. Cite journal requires
|journal=
(help)