57 (number)

57 (fifty-seven) is the natural number following 56 and preceding 58.

56 57 58
[[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]] [[{{#expr: (floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}} (number)|{{#switch:{{{1}}}|-1={{#ifexpr:(floor({{{number}}} div 10)) = 0|-1|←}}|10=→|#default={{#expr:(floor({{{number}}} div {{{factor}}})) * {{{factor}}}+({{{1}}}*{{{factor}}} div 10)}}}}]]
Cardinalfifty-seven
Ordinal57th
(fifty-seventh)
Factorization3 × 19
Divisors1, 3, 19, 57
Greek numeralΝΖ´
Roman numeralLVII
Binary1110012
Ternary20103
Octal718
Duodecimal4912
Hexadecimal3916

In mathematics

Fifty-seven is the sixteenth discrete semiprime and the sixth in the (3×q) family. With 58 it forms the fourth discrete bi-prime pair. 57 has an aliquot sum of 23 and is the first composite member of the 23-aliquot tree. Although 57 is not prime, it is jokingly known as the "Grothendieck prime" after a story in which mathematician Alexander Grothendieck supposedly gave it as an example of a particular prime number. This story is repeated in Part 2 of a biographical article on Grothendieck in Notices of the American Mathematical Society.[1]

As a semiprime, 57 is a Blum integer since its two prime factors are both Gaussian primes.[2]

57 is a 20-gonal number.[3] It is a Leyland number since 25 + 52 = 57.[4]

57 is a repdigit in base 7 (111).

There are 57 vertices and 57 hemi-dodecahedral facets in the 57-cell, a 4-dimensional abstract regular polytope.[5] The Lie algebra E7+1/2 has a 57-dimensional Heisenberg algebra as its nilradical, and the smallest possible homogeneous space for E8 is also 57-dimensional.[6]

In science

Astronomy

In fiction and media

In films

  • Passenger 57, a film starring Wesley Snipes
  • In the movie Contagion, Vaccine #57 successfully protects the lab monkey from infection.
  • The Terminal (2004) starring Tom Hanks. There are 57 members of the jazz band that Viktor Navorski carries a picture of with him.

In games

In literature

In radio

In television

In food

  • Heinz 57, a brand of sauce, and the number of varieties of foods claimed to be produced by the H.J. Heinz Company

In music

  • "Incident on 57th Street", a song by Bruce Springsteen and the E Street Band, from their 1973 album, The Wild, the Innocent and the E Street Shuffle
  • "57 Channels (And Nothin' On)", a song by Bruce Springsteen, from his 1992 album Human Touch
  • "57", the name of a song by Biffy Clyro on their 2002 debut album, Blackened Sky
  • Shure SM57, considered the workhorse of recording microphones

In organizations

  • The number of the French department Moselle

In places

In transportation and vessels

In other fields

See also

References

  1. Jackson, Allyn (November 2004). "Comme Appelé du NéantAs if Summoned from the Void: The Life of Alexandre Grothendieck" (PDF). Notices of the American Mathematical Society. 51 (10).
  2. "Sloane's A016105 : Blum integers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-30.
  3. "Sloane's A051872 : 20-gonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-30.
  4. "Sloane's A076980 : Leyland numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-05-30.
  5. Coxeter, H. S. M. (1982), "Ten toroids and fifty-seven hemidodecahedra", Geometriae Dedicata, 13 (1): 87–99, doi:10.1007/BF00149428, MR 0679218
  6. Vogan, David (2007), "The character table for E8" (PDF), Notices of the American Mathematical Society, 54 (9): 1122–1134, MR 2349532
  7. The NGC / IC Project - Home of the Historically Corrected New General Catalogue (HCNGC) since 1993
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.