List of possible impact structures on Earth

This is a list of possible impact structures on Earth. More than 130 geophysical features on the surface of the Earth have been proposed as candidate sites for impact events by appearing several times in the literature and/or being endorsed by the Impact Field Studies Group (IFSG)[1] and/or Expert Database on Earth Impact Structures (EDEIS).[2] For the purposes of this list and the List of impact craters on Earth, the terminology of "confirmed" as defined by the Earth Impact Database (EID) is considered authoritative.[3] The list below includes those features which remain unconfirmed, each of which is ranked according to a three-step confidence level as indicated by the Russian Academy of Sciences, by Anna Mikheeva:[4] 1 for "probable", 2 for "potential", and 3 for "questionable". Level 4 is given to discredited structures, which hence represent geological features other than impact craters.[4] Structures with confidence 0 are considered "confirmed" (EID) or "proven" (Mikheeva) and should be placed in the lists of confirmed craters according to continent.

List of possible impact structures

The following tables list geological features on Earth that some individuals have associated with impact events, but for which there is currently no confirming scientific evidence in the peer-reviewed literature. In order for a structure to be confirmed as an impact crater, it must meet a stringent set of well-established criteria. Some proposed impact structures are likely to eventually be confirmed, whereas others are likely to be shown to have been misidentified (see below). Recent extensive surveys have been done for Australian (2005),[5] African (2014),[6] and South American (2015)[7] craters, as well as those in the Arab world (2016).[8] A book review by A. Crósta and U. Reimold disputes some of the evidence presented for several of the South American structures.[9]

Legend
Confidence[4]0 - proven[note 1]
1 – probable
2 – potential
3 – questionable
4 – discredited
DiameterKilometers
AgeApproximate
Name Location Confidence Diameter (km) Age (Ma) Notes Image Coordinates
38th Parallel structures United States (Missouri, etc.) variable 2-17 320 ± 10 [11]
37.5°N 88.3°W / 37.5; -88.3 (Hicks Dome)
37.8°N 90.2°W / 37.8; -90.2 (Avon crater)
37.8°N 91.4°W / 37.8; -91.4 (Crooked Creek crater)
37.9°N 92.7°W / 37.9; -92.7 (Decaturville crater)
37.7°N 92.4°W / 37.7; -92.4 (Hazelgreen crater)
38.0°N 93.6°W / 38.0; -93.6 (Weaubleau-Osceola structure)
37.7°N 95.7°W / 37.7; -95.7 (Rose Dome)
Ak-Bura (Murgab) Tajikistan 1 0.080 0.0003
(1700 AD)
[12][13][14][15] 38°5′38.5″N 74°16′58″E
Al Madafi Saudi Arabia 1 6 6-66 [16][17][18] 28.67°N 37.18°E / 28.67; 37.18 (Al Madafi)
Alamo bolide impact United States (Nevada) 0 100 ± 40 367 [19][12][20][note 1] 37.31°N 116.18°W / 37.31; -116.18 (Alamo)
Anéfis Mali 2 3.9 23? [21][12][22][23] 18.072°N 0.048°W / 18.072; -0.048 (Anefis)
Aorounga Central Chad 0 11.6 <345 [24][25][26]
19.229°N 19.261°E / 19.229; 19.261 (Aorounga center)
Arganaty Kazakhstan (Almaty region) 0 300 250 [27][28][29][note 1] 46.5°N 79.8°E / 46.5; 79.8 (Arganaty)
Arlit Niger 2 10 ? [30][31][32] 21.353°N 9.145°E / 21.353; 9.145 (Arlit)
Australian impact structure Australia (Northern Territory) Highly speculative 600 >545 [33] 25°33′S 131°23′E
Azuara Spain 1 35-40 30-40 [34]
41°07′N 0°13′W
Bajada del Diablo Argentina 2 40 0.45 ± 0.3 [35][36][37] 42°46′S 67°24′W
Bajo Hondo Argentina (Buenos Aires Province) 2 3.9 <10 [38][39] 42°15′S 67°55′W
Bangui magnetic anomaly Central African Republic 2 600-800? >542 [40][6][41]
6°N 18.3°E / 6; 18.3 (Bangui)
Bateke Plateau Gabon 3 7.1 <2.6 [42][43] 0°38′45″S 14°27′29″E
Bedout Australia (offshore) 2 250 250 [44][45][5] 18°S 119°E
Bee Bluff United States (Texas) 0 2.4 40? [46][47][48][note 1] 29.03°N 99.85°W / 29.03; -99.85 (Bee Bluff)
Björkö Sweden (Björkö, Ekerö) 1 10 1200 [49][50] 59.30°N 17.60°E / 59.30; 17.60 (Björkö)
Bloody Creek Canada (Nova Scotia) 1 40 ? [51] 44°45′N 65°14′W
Bohemian crater Czech Republic 2 260-300 >700? [52][12][53][54] 50.0°N 14.7°E / 50.0; 14.7 (Bohemian)
Bow City Canada (Alberta) 2 8 70 [55] 50°25′N 112°16′W
Bowers crater Antarctic Ocean (Ross Sea) 2 100 3-5 [56][57][58][59] 71.2°S 176°E / -71.2; 176 (Bowers)
Brushy Creek Feature United States (Louisiana) 1 2.0 0.011–0.030 [60][61] 30.76°N 90.73°W / 30.76; -90.73 (Brushy Creek Feature)
Burckle Indian Ocean 1 30? 3000 BC [62][63][64] 30.86°S 61.36°E / -30.86; 61.36 (Burckle)
Catalina structures
(Navy, Catalina, Emery Knoll)
Pacific Ocean (NE) 2 12, 32, 37 16-18 [65][66][67] 32.91°N 118.09°W / 32.91; -118.09 (Catalina)
Cerro do Jarau Brazil (Paraná) 1 10 117 [68][69][70] 30°12′S 56°32′W
Charity Shoal Canada (Ontario) 2 1.2 <470 [71][72][73][74]
44°2′15″N 76°29′37″W
Corossol Canada (Quebec) 3 4 <470 [75][76][77][78] 50°03′N 66°23′W
Darwin Crater Tasmania 0 1.2 0.816 [79][note 1]
42°19′S 145°40′E
Decorah United States (Iowa) 2 5.6 470 [80][81][82]
43°18′50″N 91°46′20″W
Diamantina River ring feature Australia (Queensland) 2 120 300 [83][84]
22°09′S 141°54′E
Dumas magnetic anomaly Canada (Saskatchewan) 1 3.2 70 ± 5 [85][86] 49.92°N 102.12°W / 49.92; -102.12 (Dumas)
Duolun China (Inner Mongolia) 2 120 ± 50 129 ± 3 [87][88] 42°3′N 116°15′E
El-Baz Egypt 1 4 ? [89][26][90] 24°12′N 26°24′E
Eltanin Pacific Ocean (SE) 0 35? 2.5 [91][92][93][note 1] 57°47′S 90°47′W
Faya Basin Chad 1 2 385 ± 15 [94][95] 18°10′N 19°34′E
Falkland Plateau anomaly Atlantic Ocean
(near Falkland Islands)
2 250-300 250 [96][12][97][98][99][100] 51°S 62°W
Fried Egg structure Atlantic Ocean (near Azores) 2 6 17 [101][102] 36°N 27°W
Garet El Lefet Libya 1 3 ? [103][104][105] 25.0°N 16.5°E / 25.0; 16.5 ("Garet El Lefet")
Gatun structure Panama 1 3 20 [106] 09°05′58″N 79°47′22″W
General San Martín Argentina 2 11 1.2 [107][108][109] 38°0′S 63°18′W
Gnargoo Australia (Western Australia) 1 75 <300 [110][111] 24°48′24″S 115°13′29″E
Guarda Portugal 1 30 200 [112][113] 40°38′N 07°06′W
Hartney anomaly Canada (Manitoba) 1 8 120 ± 20 [114][86][115] 49.4°N 100.67°W / 49.4; -100.67 (Hartney)
Hiawatha Greenland 2 31 <1985 [116][117]
78°44′N 66°14′W
Hickman Australia (Western Australia) 2 30 0.01–0.1 [118] 23°2′13″S 119°40′59″E
Hico United States (Texas) 1 9 <60 [119][120][121] 32.01°N 98.03°W / 32.01; -98.03 (Hico)
Hotchkiss Canada (Alberta) 1 4 220 ± 100 [122][123] 57.539°N 118.878°W / 57.539; -118.878 (Hotchkiss)
Howell United States (Tennessee) 1 2.5 380 ± 10 [124][125][126] 35.23°N 86.61°W / 35.23; -86.61 (Howell)
Ibn-Batutah Libya 2 2.5 120 ± 20 [127][128] 21°34′10″N 20°50′15″E
Ishim Kazakhstan (Akmola region) 0 300 430-460 [129][130][131][note 1] 52°0′N 69°0′E
Iturralde Bolivia 1 8.0 0.011–0.030 [132]
12°35′S 67°40′W
Jackpine Creek magnetic anomaly Canada (British Columbia) 1 25 120 ± 20 [133][134] 55.6°N 120.1°W / 55.6; -120.1 (Jackpine)
Jebel Hadid Libya 2 4.7 <66 [135][136] 20°52′12″N 22°42′18″E
Jeptha Knob United States (Kentucky) 0 4.3 425 [137][note 1] 38°11′N 85°07′W
Johnsonville United States (South Carolina) 0 11 300? [138][12][139][note 1] 33°49′N 79°22′W
Jwaneng South Botswana 2 1.3 <66 [140][141] 24°42′S 24°46′E
Luna India 2 2.1 0.0040
(2000 BC)
[142][143] 23°42′17″N 69°15′37″E
Kebira Egypt 2 31 100 [144][145]
24°40′N 24°58′E
Kilmichael United States (Mississippi) 1 13 45 [146][147][148][149] 33.5°N 89.55°W / 33.5; -89.55 (Kilmichael)
Krk structure Croatia 2 12 40 [150][151] 45.06°N 14.62°E / 45.06; 14.62 (Krk)
Kurai Basin Russia (Altai Region) 1 20 <200 [152][153] 50°12′N 87°54′E
La Dulce Argentina 1 2.8 0.445? [154][108] 38.21°S 59.21°W / -38.21; -59.21 (La Dulce)
Labynkyr Russia 0 67 150? [155][12][156][157][note 1] 62.325°N 143.090°E / 62.325; 143.090 (Labynkyr)
Lac Iro Chad 1 13 ? [158][6][159]
10°10′N 19°40′E
Lairg Gravity Low Scotland 2 40 1200 [160] 58°1′12″N, 4°24′0″W
Lake Cheko Russia (Siberia) 3 50 0.0001
(1908 AD)
[161] 60.964°N 101.86°E / 60.964; 101.86 (Cheko)
Lake Tai (Tai Hu) China (Jiangsu) 1 70 ± 5 365 ± 5 [162][163][164] 31°14′N 120°8′E
Loch Leven Scotland 2 18x8 290 [165][166] 56°12′N 3°23′W
Lorne Basin Australia (New South Wales) 2 30 250 ± 2 [167][168] 31.60°S 152.62°E / -31.60; 152.62 (Lorne)
Lycksele structure 2 Sweden 2 130 1500 ± 300 [169][170][171] 64.92°N 18.78°E / 64.92; 18.78 (Lycksele)
Madagascar structure 3 Madagascar 4 12 ? [172][173] 18.839°S 46.221°E / -18.839; 46.221 (Madagascar)
Magyarmecske anomaly Hungary 1 7 299 [174][175][176][177] 45.95°N 17.97°E / 45.95; 17.97 (Magyarmecske)
Mahuika New Zealand (offshore) 2 20? 0.0006
(1400 AD)
[178][179][63] 48.3°S 166.4°E / -48.3; 166.4 (Mahuika)
Maniitsoq structure Greenland 2 100 3000 [180][181][182] 65°15′N 51°50′W
Mejaouda (El Mrayer) Mauritania 1 3 <542? [183][12][105][22][184] 22.722°N 7.312°W / 22.722; -7.312 (Mejaouda)
Merewether Canada (Newfoundland) 0 20 0.0009
(1100 AD)
[185][186][note 1] 58.04°N 64.05°W / 58.04; -64.05 (Merewether)
Meseta de la Barda Negra Argentina 4 1.5 4 ± 1 [187][188] 39°10′S 69°53′W
Middle-Urals Ring Structure Russia 1 400–550 >542 [189][190][191] 56°N 56°E
Mistassini-Otish impact structure Canada (Quebec) 1 600 2200 [192][193] 50.57°N 73.42°W / 50.57; -73.42 (Mistassini lake)
Mount Ashmore dome Indian Ocean (in Timor Sea) 2 >50 35 [194][195][196] 12.55°S 123.2°E / -12.55; 123.2
Mousso Chad 2 3.8 <542 [197][198] 17°58′N 10°53′E
Mt. Oikeyama Japan 2 90 0.030? [199][200] 35.405°N 138.013°E / 35.405; 138.013 (Oikeyama)
Mulkarra Australia (South Australia) 1 17 105 [201][202] 27.85°S 138.92°E / -27.85; 138.92 (Mulkarra)
Nastapoka (Hudson Bay) arc Canada (Quebec) 3 450 1800? [203][12][204][205]
57°00′N 78°50′W
Ouro Ndia Mali 2 3 <2.6 [206][12][22] 14°59.8′N 4°30.0′W
Pantasma Nicaragua 3 10 ? [207] 13.37°N 85.95°W / 13.37; -85.95 (Pantasma)
Panther Mountain United States (New York) 1 10 375 [208][209][210]
42°03′N 74°24′W
Peerless structure United States (Montana) 1 6 470 ± 10 [211][212] 48.8°N 105.8°W / 48.8; -105.8 (Peerless)
Piratininga Brazil (Paraná) 3 12 117 [213][69][214] 22°28′S 49°09′W
Praia Grande Brazil (Santos Basin, offshore) 1 20 84 [215][69][70] 25°39′S 45°37′W
Ramgarh India (Rajasthan) 0 3 ? [216][217][218][note 1]
25°20′16″N 76°37′29″E
Ross Antarctic Ocean (Ross Sea) 2 600? <38 [219][57][220] 77.5°S 178.5°E / -77.5; 178.5 (Ross)
Rubielos de la Cérida Spain 0 80x40 30-40 [221][222][223][note 1]
40.783°N 1.25°W / 40.783; -1.25 (Rubielos)
Sakhalinka Pacific Ocean (NW) 2 12 70 [224][225][226][227][228] 30°15′N 170°03′E
São Miguel do Tapuio Brazil (Piauí) 1 22 120 [229][12][70][230][231][232] 5°37.6′S 41°23.3′W
Shanghewan China (Jilin) 1 30 ? [233][234][235] 44°29′N 126°11′E
Shiva Indian Ocean 1 500 66 [236] 18°40′N 70°14′E
Shiyli Kazakhstan 0 5.5 46 ± 7 [237][238][note 1] 49°10′N 57°51′E
Silverpit Atlantic Ocean (North Sea) 1 20 60 ± 15 [239][240][241][242][243][244][245][246]
54°14′N 1°51′E
Sirente Italy 4 10 0.0017
(320 ± 90 AD)
[247][248] 42°10′38″N 13°35′45″E
Sithylemenkat Lake United States (Alaska) 3 12 0.033? [249][250][251][252] 66°07′34″N 151°23′20″W
Smerdyacheye Lake Russia 1 20 0.01–0.03? [253][254] 55.735°N 39.823°E / 55.735; 39.823 (Smerdyacheye)
Sudan 3 (Mahas) Sudan 2.8 ? 20°01.9′N 30°13.7′E
Sudan 2 (Bayuda) Sudan 2 10 ? [255][256][257]
Mahas
Bayuda
Red Sea Hills
Three craters in Sudan
18°03.5′N 33°30.2′E
Sudan 1 (Red Sea Hills) Sudan 2 6 ? [258][259][260]
Mahas
Bayuda
Red Sea Hills
Three craters in Sudan
17°57.1′N 37°56.1′E
Svetloyar Lake Russia 0 40 0.0026
(600 BC)
[261][262][note 1] 56.819°N 45.093°E / 56.819; 45.093 (Svetloyar)
Takamatsu Japan 1 4-8 15 [263][264][265][266][267] 34.3°N 134.05°E / 34.3; 134.05 (Takamatsu)
Tarek (Gilf Kebir) Egypt 3 2.1 112? [268][12][269][270] 24.601°N 27.205°E / 24.601; 27.205 (Tarek)
Tatarsky North Pacific Ocean (NW) 2 14 ? [271][272] 49°57′35″N 141°23′40″E
Tatarsky South Pacific Ocean (NW) 2 20 ? [273][272] 48°17′38″N 141°23′40″E
Tefé River structure Brazil (Amazonas) 2 15 65 ± 20 [274][70][275] 4°57′S 66°03′W
Talundilly Australia (Queensland) 1 84 128 ± 5 [276][277][278] 24.73°S 144.62°E / -24.73; 144.62 (Talundilly)
Temimichat Mauritania 1 0.7 2? [279][12][280] 24°15′N 9°39′W
Tsenkher Mongolia 1 3.6 5 [281][282][283] 43°38′41″N 98°22′09″E
Toms Canyon United States (New Jersey) 1 22 35 [284][285][286][287] 39°08′N 72°51′W
Umm al Binni Iraq 0 3.4 <0.0050
(3000 BC)
[288][note 1] 31°14′29″N 47°06′21″E
Ust-Kara Russia (Nenetsia, offshore) 2 25 70 ± 2.2 [289][290]
69.28°N 65.35°E / 69.28; 65.35 (Ust-Kara)
Vélingara Senegal 1 48 23-40 [291][292]
13°02′N 14°08′W
Versailles United States (Kentucky) 1 1.5 <400 [293][294] 38.09°N 84.67°W / 38.09; -84.67 (Versailles)
Vichada Colombia (Vichada) 2 50 30? [295][12]
4°30′N 69°15′W
Victoria Island United States (California) 2 5.5 37-49 [296] 37.89°N 121.53°W / 37.89; -121.53 (Victoria Island structure)
Warburton East Australia (South Australia) 2 200 300-360 [297][298][299][300] 28°S 140.5°E / -28; 140.5 (Warbuton)
Warburton West Australia (South Australia) 200 300-360 [300][298]
Weaubleau United States (Missouri) 1 19 330 ± 10 [301][302][303]
38.0°N 93.6°W / 38.0; -93.6 (Weaubleau)
Wembo-Nyama (Omeonga) DR Congo 2 36-46 60? [304][305][306] 3°37′52″S 24°31′07″E
Wilkes Land 2 Antarctica 2 480 250-500 [307]
70°S 140°E
Woodbury United States (Georgia) 1 7 500 ± 100 [308][309] 32.92°N 84.55°W / 32.92; -84.55 (Woodbury)
Yallalie Australia (Western Australia) 0 12 99? [310][12][311][312][313][314][note 1] 30°26′40″S 115°46′16″E
Zerelia West Greece 2 20 0.0070
(5000 BC)
[315][316] 39°09′48″N 22°42′32″E
Zerelia East Greece 2 10 0.0070
(5000 BC)
[315][316] 39°09′43″N 22°42′51″E

Overview

Russia's Lake Cheko is thought by one research group to be the result of the famous Tunguska event, although sediments in the lake have been dated back more than 5,000 years. There is highly speculative conjecture about the supposed Sirente impact (c. 320 ± 90 AD) having caused the Roman emperor Constantine's vision at Milvian Bridge.[317]

The Burckle crater and Umm al Binni structure are proposed to be behind the floods that affected Sumerian civilization.[318][319] The Kachchh impact may have been witnessed by the Harappan civilization and mentioned as a fireball in Sanskrit texts.[143]

The ages of the Bloody Creek crater[320] and Hiawatha crater are uncertain.

As the trend in the Earth Impact Database for about 26 confirmed craters younger than a million years old shows that almost all are less than two km (1.2 mi) in diameter (except the three km (1.9 mi) Agoudal and four km (2.5 mi) Rio Cuarto), the suggestion that two large craters, Mahuika (20 km (12 mi)) and Burckle (30 km (19 mi)), formed only within the last few millennia has been met with skepticism.[321][322][323] However, the source of the young (less than a million years old) and enormous Australasian strewnfield (c. 790 ka) is suggested to be a crater about 100 km (62 mi) across somewhere in Indochina,[324][325] with Hartung and Koeberl (1994) proposing the elongated 100 km × 35 km (62 mi × 22 mi) Tonlé Sap lake in Cambodia (visible in the map at the side) as a suspect structure.[326]

The Decorah crater has been conjectured as being part of the Ordovician meteor event.[327]

Several twin impacts have been proposed, such as the Rubielos de la Cérida and Azuara (30–40 Ma),[328] Cerro Jarau and Piratininga (c. 117 Ma),[69] and Warburton East and West (300–360 Ma).[300] However, adjacent craters may not necessarily have formed at the same time, as demonstrated by the case of the confirmed Clearwater East and West lakes.

Some confirmed impacts like Sudbury or Chicxulub are also sources of magnetic anomalies[329] and/or gravity anomalies. The magnetic anomalies Bangui and Jackpine Creek,[134] the gravity anomalies Wilkes Land crater and Falkland Islands,[97] and others have been considered as being of impact origin. Bangui apparently has been discredited,[26][330] but appears again in a 2014 table of unconfirmed structures in Africa by Reimold and Koeberl.[6]

Several anomalies in Williston Basin were identified by Swatzky in the 1970s as astroblemes including Viewfield, Red Wing Creek, Eagle Butte, Dumas, and Hartney, of which only the last two are unconfirmed.[86]

The Eltanin impact has been confirmed (via an iridium anomaly and meteoritic material from ocean cores) but, as it fell into the Pacific Ocean, apparently no crater was formed. The age of Silverpit and the confirmed Boltysh crater (65.17 ± 0.64 Ma), as well as their latitude, has led to the speculative hypothesis that there may have been several impacts during the KT boundary.[331][332] Of the five oceans in descending order by area, namely the Pacific, Atlantic, Indian, Antarctic, and Arctic, only the smallest (the Arctic) does not yet have a proposed unconfirmed impact crater.

Craters larger than 100 kilometres (62 mi) in the Phanerozoic (after 541 Ma) are notable for their size as well as for the possible coeval events associated with them especially the major extinction events.

For example, the Ishim impact structure[130] is conjectured to be bounded by the late Ordivician-early Silurian (c. 445 ± 5 Ma),[131] the two Warburton basins have been linked to the Late Devonian extinction (c. 360 Ma),[298] both Bedout and the Wilkes Land crater have been associated with the severe Permian–Triassic extinction event (c. 252 Ma),[333][334] Manicouagan (c. 215 Ma) was once thought to be connected to the Triassic–Jurassic extinction event (c. 201 Ma)[335] but more recent dating has made it unlikely, while the consensus is the Chicxulub impact caused the one for Cretaceous–Paleogene (c. 66 Ma).

However, other extinction theories employ coeval periods of massive volcanism such as the Siberian Traps (Permian-Triassic) and Deccan Traps (Cretaceous-Paleogene).

Undiscovered but inferred

Australasian strewnfield. Shaded areas represent tektite finds.

There is geological evidence for impact events having taken place on Earth on certain specific occasions, which should have formed craters, but for which no impact craters have been found. In some cases this is because of erosion and Earth's crust having been recycled through plate tectonics, in others likely because exploration of the Earth's surface is incomplete. Typically the ages are already known and the diameters can be estimated.

Parent crater of Expected crater diameter Age Notes
Dakhleh glass 0.4 km 150 ka [336][337]
Argentinian tektites 5 km 480 ka [338]
Australasian tektites 32–114 km 780 ka [325]
Central American tektites 14 km 820 ka [339][340]
Skye ejecta deposits Unknown 60 Ma [341]
Stac Fada Member 40 km 1.2 Ga [342]
Barberton Greenstone Belt microtektites 500 km 3.2 Ga [343]
Marble Bar impact spherules "hundreds of kilometers" 3.4 Ga [344]

Mistaken identity

Some geological processes can result in circular or near-circular features that may be mistaken for impact craters. Some examples are calderas, maars, sinkholes, glacial cirques, igneous intrusions, ring dikes, salt domes, geologic domes, ventifacts, tuff rings, forest rings, and others. Conversely, an impact crater may originally be thought as one of these geological features, like Meteor Crater (as a maar) or Upheaval Dome (as a salt dome).

The presence of shock metamorphism and shatter cones are important criteria in favor of an impact interpretation, though massive landslides (such as the Köfels landslide of 7800 BC which was once thought to be impact-related) may produce shock-like fused rocks called "frictionite".[345]

See also

Notes and references

Notes

  1. Shown as "proven" by Mikheeva (2017),[4] not "confirmed" by EID (2018)[10]

References

  1. Impact Field Studies Group
  2. Expert Database on Earth Impact Structures
  3. "Earth Impact Database". Archived from the original on 2015-02-07. Retrieved 2016-06-02.
  4. Mikheeva, 2017
  5. Haines, P. W. (2005). "Impact cratering and distal ejecta: The Australian record". Australian Journal of Earth Sciences. 52 (4–5): 481–507. Bibcode:2005AuJES..52..481H. doi:10.1080/08120090500170351.
  6. Reimold, Wolf Uwe; Koeberl, Christian (2014). "Impact structures in Africa: A review". Journal of African Earth Sciences. 93: 57–175. Bibcode:2014JAfES..93...57R. doi:10.1016/j.jafrearsci.2014.01.008. PMC 4802546. PMID 27065753.
  7. Acevedo, R.; Rocca, M. C.; Ponce, J.; Stinco, S. (2015). Impact Craters in South America. SpringerBriefs in Earth Sciences. Springer. ISBN 978-3-319-13092-7.
  8. Chabou, M. C. (2016). "An updated inventory of meteorite impact structures in the Arab world". 1st ArabGU International Conference, Feb 2016, Algeria.
  9. Crósta, Alvaro P.; Reimold, Wolf Uwe (2016). "Impact Craters in South America, by Acevedo R. D., Rocca M. C. L., Ponce J. F., and Stinco S. G. Heidelberg: Springer, 2015. 104 p. SpringerBriefs in Earth Sciences: South America and the Southern Hemisphere. ISBN 978-3-319-13092-7". Meteoritics & Planetary Science. 51 (5): 996–999. doi:10.1111/maps.12632.
  10. List of confirmed impact craters by name - Earth Impact Database
  11. Rampino, M.R; Volk, T. (1996). "Multiple impact event in the Paleozoic: Collision with a string of comets or asteroids?" (PDF). Geophysical Research Letters. 23 (1): 49–52. Bibcode:1996GeoRL..23...49R. doi:10.1029/95GL03605. Retrieved 2019-04-06.
  12. Expert Database on Earth Impact Structures (EDEIS), Accessed May 2016
  13. Murgab
  14. Meteorite crater site of Ak-Bura
  15. Bacharev, A (1952), The Murgab meteorite crater. Astron. Tsirk., No 122, pp. 8–10
  16. Al Madafi
  17. Garvin, James B.; Blodget, Herbert W. (1986). "Suspected Impact Crater Near Al Madafi, Saudi Arabia". Meteoritics. 21: 366. Bibcode:1986Metic..21..366G.
  18. Roger Weller. Al Madafi crater
  19. Alamo
  20. Henry Brean (2015). New study ranks Nevada crater among world's largest, Las Vegas Review Journal
  21. Anefis
  22. A. Rossi (2002). Seven Possible New Impact Structures In Western Africa Detected On Aster Imagery, Lunar and Planetary Science XXXIII
  23. Roger Weller Anefis crater
  24. Aorounga
  25. Ocampo, A. C.; Pope, K. O. (1996). "Shuttle Imaging Radar (SIR-C) Images Reveal Multiple Impact Craters at Aorounga, Northern Chad". Lunar and Planetary Science. 27: 977. Bibcode:1996LPI....27..977O.
  26. S. Master & W. Reimold (2000). The impact cratering record of Africa: An updated inventory of proven, probable, possible, and discredited impact structures on the African continent, Catastrophic Events Conference 2000.
  27. Arganaty
  28. Zeilik, B. S. (1987). "The Arganaty cosmogenic crater in southern Kazakhstan and the ring structures associated with it". Akademiia Nauk SSSR, Doklady. 297 (4): 925–928. Bibcode:1987DoSSR.297..925Z.
  29. Barash, M. (2012). "Mass Extinction of Ocean Organisms at the Paleozoic–Mesozoic Boundary: Effects and Causes". Oceanology. 52 (2): 238–248. Bibcode:2012Ocgy...52..238B. doi:10.1134/s000143701201002x.
  30. Unnamed ("Arlit")
  31. David Rajmon (2010). Impact Field Studies Group
  32. Marc Fokker (2008). Astroforum Netherlands
  33. Connelly, Daniel P. "Guide to MAPCIS for AGCC" (PDF). Retrieved 31 March 2019.
  34. Azuara
  35. Bajada del Diablo
  36. R. D. Acevedo, J. Rabassa, M. J. Orgeira, et al. (2010) Bajada Del Diablo Impact Crater Strewn-Field, Patagonia, Argentina: The Largest Crater Field In The World? 73rd Annual Meteoritical Society Meeting
  37. Acevedo, R.D.; Rabassa, J.; Ponce, J.F.; Martínez, O.; Orgeira, M.J.; Prezzi, C.; Corbella, H.; González-Guillot, M.; Rocca, M.; Subías, I.; Vásquez, C. (2012). "The Bajada del Diablo astrobleme-strewn field, central Patagonia Argentina: Extending the exploration to surrounding areas". Geomorphology. 169–170: 151–164. Bibcode:2012Geomo.169..151A. doi:10.1016/j.geomorph.2012.04.020.
  38. Bajo Hondo
  39. M. C. Rocca (2005). BAJO HONDO, CHUBUT, PATAGONIA, ARGENTINA: A NEW METEORITE IMPACT CRATER IN BASALT?, 68th Annual Meteoritical Society Meeting
  40. Bangui
  41. Girdler, R.; Taylor, P.; Frawley, J. (1992). "A possible impact origin for the Bangui magnetic anomaly (Central Africa)". Tectonophysics. 212 (1): 45–58. Bibcode:1992Tectp.212...45G. doi:10.1016/0040-1951(92)90139-w.
  42. Bateke
  43. S. Master, G.R.J. Cooper and K. Klajnik (2013). The Bateke Plateau Structure – A New Possible 7 Km Diameter Quaternary Meteorite Impact Structure In Gabon: A Remote Sensing Study, 13th SAGA Biennial Conference & Exhibition
  44. Bedout
  45. Becker, L.; Poreda, R. J.; Basu, A. R.; Pope, K. O.; Harrison, T. M.; Nicholson, C.; Iasky, R. (2004). "Bedout: A Possible End-Permian Impact Crater Offshore of Northwestern Australia". Science. 304 (5676): 1469–1476. Bibcode:2004Sci...304.1469B. doi:10.1126/science.1093925. PMID 15143216.
  46. Bee Bluff
  47. R. A. Graham (2005) Reinvestigation of the Bee Bluff Structure South of Uvalde, Texas, 'The Uvalde Crater'. Lunar and Planetary Science XXXVI (2005)
  48. Bee Bluff
  49. Björkö
  50. H. Henkel, A. Bäckström, B. Bergman, O. Stephansson, and M. Lindström (2005). Geothermal Energy from Impact Craters? The Björkö Study, Proceedings World Geothermal Congress 2005
  51. Bloody Creek
  52. Bohemia
  53. Papagiannis, Michael D. (1989). "Photographs from geostationary satellites indicate the possible existence of a huge 300 KM impact crater in the Bohemian region of Czechoslovakia". Meteoritics. 24: 313. Bibcode:1989Metic..24R.313P.
  54. Rajlich, P. (1992). "Bohemian Circular Structure, Czechoslovakia: Search for the Impact Evidence". Abstracts of Papers Presented to the International Conference on Large Meteorite Impacts and Planetary Evolution. Held August 31 – September 2, 1992, in Sudbury, Ontario, Canada. Large Meteorite Impacts and Planetary Evolution. 790. Lunar and Planetary Institute. p. 57. Bibcode:1992LPICo.790...57R. LPI Contribution 790.
  55. Bow City
  56. Bowers
  57. L. P. Hrjanina (Khryanina), 2006. "Once again about Kainozoic meteorite structures in the Ross Sea, Antarctica" (PDF).
  58. Gerard-Little, P., Abbott, D., Breger, D. and Burckle, L (2006). "Evidence for a Possible Late Pliocene Impact in the Ross Sea, Antarctica".CS1 maint: uses authors parameter (link)
  59. Paul Rincon (2006). Space impact clue in Antarctica, BBC News
  60. Brushy Creek
  61. Heinrich, P.V. (2003) Possible Meteorite Impact Crater in St. Helena Parish, Louisiana Search and Discovery Article. no. 50006. American Association of Petroleum Geologist, Tulsa, Oklahoma. Retrieved March 27, 2011.
  62. Burckle
  63. Abbott, Dallas H., Martos, Suzanne, Elkinton, Hannah, Bryant, Edward F., Gusiakov, Viacheslav, and Breger, Dee (2006). Impact craters as sources of megatsunami generated chevron dunes. 2006 Philadelphia Annual Meeting (22–25 October 2006)
  64. Masse W. B., Bryant E., Gusiakov V., Abbott D., Rambolamanana G., Raza H., Courty M.A. (2006). Holocene Indian ocean cosmic impacts – the megatsunami chevron evidence from southern Madagascar. AGU, San Francisco
  65. Catalina
  66. Legg, Mark R.; Nicholson, Craig; Goldfinger, Chris; Milstein, Randall; Kamerling, Marc (2004). "Large enigmatic crater structures offshore southern California" (PDF). Geophys. J. Int. 159 (2): 803–815. Bibcode:2004GeoJI.159..803L. doi:10.1111/j.1365-246x.2004.02424.x.
  67. Brandsma Dan, Lund Steve P.; Henyey Thomas, L. (1989). "Paleomagnetism of Late Quaternary marine sediments from Santa Catalina basin, California continental borderland ". J. Geophys. Res. B. 94 (1): 547–564. Bibcode:1989JGR....94..547B. doi:10.1029/JB094iB01p00547.
  68. Jarau
  69. A. Crósta, R. Romano (2004). Brazilian Impact Craters: A Review, 35th Lunar and Planetary Science Conference
  70. A. Crósta, M. Vasconcelos (2013). Update On The Current Knowledge Of The Brazilian Impact Craters, 44th Lunar and Planetary Science Conference
  71. Charity Shoal
  72. Holcombe, T.L., J. S. Warren, D. F. Reid, W. T. Virden, and D. L. Divins, 2001, Small Rimmed Depression in Lake Ontario: An Impact Crater? Journal of Great Lakes Research. vol. 27, no. 4, pp. 510–517.
  73. Holcombe, T.L., S. Youngblut, and N. Slowey, 2013, Geological structure of Charity Shoal crater, Lake Ontario, revealed by multi beam bathymetry. Geo-Marine Letters. vol. 33, no. 4, pp. 245–252.
  74. Suttak, P.A., 2013, High-resolution lake-based magnetic mapping and modeling of basement structures, with examples from Küçükçekmece Lagoon, Turkey and Charity Shoal, Lake Ontario. unpublished MS thesis, School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario. 113 pp.
  75. Corossol
  76. Higgins, M.D., P. Lajeunesse, G. St-Onge, R. Sanfacon, and M. Duchesne, 2013, Impact Breccia Clast from the Corossol Crater, Canada. 76th Annual Meteoritical Society Meeting. Meteoritics and Planetary Science Supplement. id.5190.
  77. Lajeunesse, P., St‐Onge, G., Locat, J., Duchesne, M.J., Higgins, M.D., Sanfaçon, R. and Ortiz, J., 2013. The Corossol structure: A possible impact crater on the seafloor of the northwestern Gulf of St. Lawrence, Eastern Canada. Meteoritics & Planetary Science, 48(12), pp. 2542–2558.
  78. Lajeunesse, P., Duchesne, M.J., St-Onge, G., Locat, J., Higgins, M., Sanfaçon, R. and Ortiz, J., 2016. The Corossol Structure: a glaciated crater of possible impact origin in the northwestern Gulf of St Lawrence, eastern Canada. In Dowdeswell, J. A., Canals, M., Jakobsson, M., Todd, B. J., Dowdeswell, E. K. & Hogan, K. A. (eds) 2016. Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient. Geological Society, London, Memoirs, 46(1), pp.127–128.
  79. Darwin
  80. Decorah
  81. Briggs, D.E.; Liu, H.P.; McKay, R.M.; Witzke, B.J. (2018). "The Winneshiek biota: exceptionally well-preserved fossils in a Middle Ordovician impact crater". Journal of the Geological Society. 175 (6): 865–874. Bibcode:2018JGSoc.175..865B. doi:10.1144/jgs2018-101.
  82. French, B.M., McKay, R.M., Liu, H.P., Briggs, D.E. and Witzke, B.J., 2018. "The Decorah structure, northeastern Iowa: geology and evidence for formation by meteorite impact." Geological Society of America Bulletin, 130(11–12), pp. 2062–2086.
  83. "Potential asteroid impact identified in western Queensland". Geoscience Australia. 2015-03-17. Retrieved 26 June 2016.
  84. Glikson, A.; Korsch, R.J.; Milligan, P. (2016). "The Diamantina River ring feature, Winton region, western Queensland". Australian Journal of Earth Sciences. 63 (5): 1–11. Bibcode:2016AuJES..63..653G. doi:10.1080/08120099.2016.1220978. Retrieved 2019-04-06.
  85. Dumas
  86. Gubins, A. & Strangway, D. (1978). "Magnetic Fields Associated with a Probable Late Cretaceous Astrobleme at Dumas, Saskatchewan", Lunar and Planetary Science IX, pp. 433–435
  87. Duolun
  88. Wu Siben (1989). (1989). "Geologic feature of the Duolun impact crater". Lunar and Planetary Science Conference. 20: 1219. Bibcode:1989LPI....20.1219W.
  89. El-Baz
  90. El-Baz, F (1981). "Circular Feature Among Dunes of the Great Sand Sea, Egypt". Science. 213 (4506): 439–440. Bibcode:1981Sci...213..439E. doi:10.1126/science.213.4506.439. PMID 17760189.
  91. Eltanin
  92. Shuvalov V.V. (2006). Numerical modeling of the Eltanin impact: determination of projectile size and tsunami amplitude. 40 ESLAB Symposium: 1 International Conference on Impact Cratering in the Solar System, Noordwijk, 8–12 May 2006, Noordwijk: ESA, pp. 201-202
  93. Weiss Rober, Lynett Patrick; Wunnemann Kai (2015). The Eltanin impact and its tsunami along the coast of South America: Inigshts for potential deposits Earth and Planet. Sci. Lett. Vol. 409. pp. 175–181
  94. Faya Basin
  95. M. Schmieder and E. Buchner (2010). The Faya Basin (Chad) revisited – structural insights from central peak morphology and potential Martian analogs, Nördlingen Ries Crater Workshop (2010).
  96. Falkland
  97. Rocca, M.; Presser, J. (2015). "A possible new very large impact structure in Malvinas Islands". Historia Natural, Tercera Series. 5 (2).
  98. Acevedo, R. D.; Rocca, M. C. L.; Ponce, J.; Stinco, S. G. (2015). Impact Craters in South America. Springer. p. 23. ISBN 978-3-319-13093-4.
  99. Maximiliano C.L. Rocca et al. (2017). (2017). "Geophysical evidence for a large impact structure on the Falkland (Malvinas) Plateau". Terra Nova. 29 (4): 233–237. Bibcode:2017TeNov..29..233R. doi:10.1111/ter.12269.
  100. Hannah Osborne (May 5, 2017). "Crater Potentially Linked to the Biggest Mass Extinction Event in Earth's History is Discovered". Newsweek Tech & Science.
  101. Fried Egg
  102. Amos, J (2009) 'Fried Egg' may be impact crater BBC News.
  103. Garet El Lefet
  104. Roger Weller. Garet El Lefet crater
  105. Classen, J. (1977). "Catalogue of 230 Certain, Probable, Possible, and Doubtful Impact Structures". Meteoritics. 12 (1): 61–78. Bibcode:1977Metic..12...61C. doi:10.1111/j.1945-5100.1977.tb00332.x.
  106. Gatun
  107. General San Martín
  108. Harris, R. S.; Schultz, P. H.; Zárate, M. A. (2007) La Dulce Crater: Evidence For A 2.8 Km Impact Structure In The Eastern Pampas Of Argentina, 38th Lunar and Planetary Science Conference
  109. R. D. Acevedo, M. Rocca, J. Rabassa and J. F. Ponce Meteorite Impact Craters In South America: A Brief Review. 74th Annual Meteoritical Society Meeting (2011)
  110. Gnargoo
  111. Iasky, R. P.; Glikson, A. Y. (2005). "Gnargoo: A possible 75 km-diameter post-Early Permian – pre-Cretaceous buried impact structure, Carnarvon Basin, Western Australia". Australian Journal of Earth Sciences. 52 (4–5): 575–586. Bibcode:2005AuJES..52..575I. doi:10.1080/08120090500170377.
  112. Guarda
  113. Monteiro, J. F. (1991). "The Guarda Circular Structure: A Possible Complex Impact Crater". Lunar and Planetary Science Conference. 22: 915. Bibcode:1991LPI....22..915M.
  114. Hartney
  115. Anderson, C. (1980). "A Seismic Reflection Study of a Probable Astrobleme near Hartney, Manitoba" (PDF). Canadian Journal of Exploration Geophysics. 16: 7.
  116. Hiawatha
  117. Kjær, Kurt H.; et al. (2018). "A large impact crater beneath Hiawatha Glacier in northwest Greenland". Science Advances. 4 (11): eaar8173. Bibcode:2018SciA....4.8173K. doi:10.1126/sciadv.aar8173. PMC 6235527. PMID 30443592.
  118. Hickman
  119. Hico
  120. J. Glidewell (2009). SEISMIC DATA THROUGH THE HICO STRUCTURE: A POSSIBLE IMPACT FEATURE IN NORTHCENTRAL TEXAS, 40th Lunar and Planetary Science Conference
  121. Wiberg Leanne (1982). The Hico Structure: a possible impact structure in north-central Texas, USA. Lunar and Planet. Sci. 13: Abstr. Pap. 13th Lunar and Planet. Sci. Conf., Houston, Tex., March 15–19, Pt 2., Houston, Tex., pp. 863–864
  122. Hotchkiss
  123. M. Mazur and R. Stewart (1998). Interpreting the Hotchkiss structure: A possible meteorite impact feature in northwestern Alberta, Consortium for Research in Elastic Wave Exploration Seismology (CREWES).
  124. Howell
  125. B. Deane, P. Lee, K. Milam, J. Evenick, and R.Zawislak (2004). THE HOWELL STRUCTURE, LINCOLN COUNTY, TENNESSEE: A REVIEW OF PAST AND CURRENT RESEARCH, Lunar and Planetary Science XXXV
  126. Milam, K. A., Henderson, T., Deane, B. (2014). An Assessment Of Shock Metamorphism In Breccias From The Howell Structure, Lincoln County, Tennessee, US, Abstracts of the 2014 GSA Annual Meeting, Geological Society of America
  127. Ibn-Batutah
  128. Ghoneim, Eman M. (2009). "Ibn-Batutah: A possible simple impact structure in southeastern Libya, a remote sensing study". Geomorphology. 103 (3): 341–350. Bibcode:2009Geomo.103..341G. doi:10.1016/j.geomorph.2008.07.005.
  129. Ishim
  130. Frank Dachille (1976). (1976). "Frequency of the formation of large terrestrial impact craters". Meteoritics. 11: 270. Bibcode:1976Metic..11..270D.
  131. Zeylik B. S.; Seytmuratova E. Yu, 1974: A meteorite-impact structure in central Kazakhstan and its magmatic-ore controlling role. Doklady Akademii Nauk SSSR: 1, pp. 167–170
  132. Iturralde
  133. Jackpine Creek
  134. S. Goussev, R. Charters, J. Peirce and W. Glenn (2002). Jackpine Creek Magnetic Anomaly: A Case of the HRAM Prospect Scale Interpretation. CSEG: The Canadian Society of Exploration Geophysicists
  135. Jebel Hadid
  136. Schmieder, Martin; Buchner, Elmar; Le Heron, Daniel Paul (2009). "The Jebel Hadid structure (Al Kufrah Basin, SE Libya) – A possible impact structure and potential hydrocarbon trap?". Marine and Petroleum Geology. 26 (3): 310–318. doi:10.1016/j.marpetgeo.2008.04.003.
  137. Jeptha Knob
  138. Snows Island
  139. Talwani, Pradeep; Wildermuth, Eric; Parkinson, Chris D. (2003). "An impact crater in northeast South Carolina inferred from potential field data". Geophysical Research Letters. 30 (7): 1366. Bibcode:2003GeoRL..30.1366T. doi:10.1029/2003GL017051.
  140. Jwaneng South
  141. Sharad Master, Brad Pitts and Marek Wendorff (2009). Jwaneng South Structure, Botswana: a New 1.3 km Diameter Buried Cenozoic Impact Crater Discovered by Airship-mounted Gravity Gradometer, 11th SAGA Biennial Technical Meeting and Exhibition
  142. Kachchh
  143. R. V. Karanth, P. Thakker, and M. Gadhavi 2006. A preliminary report on the possible impact crater of Kachchh, Current Science, vol. 91, no. 7, October 2006
  144. Kebira
  145. Reimold, W.U.; Ch, Koeberl (2014). "Impact structures in Africa: A review". J. Afr. Earth. Sci. 93: 57–175. Bibcode:2014JAfES..93...57R. doi:10.1016/j.jafrearsci.2014.01.008. PMC 4802546. PMID 27065753.
  146. Kilmichael
  147. M.S. Huber, D.T. King, Jr., L.W. Petruny, and C. Koeberl (2013). REVISITING KILMICHAEL (MISSISSIPPI), A POSSIBLE IMPACT STRUCTURE, 44th Lunar and Planetary Science Conference
  148. Robertson P.B., Butler M.D. (1982). New evidence for the impact origin of Kilmichael Mississippi. Lunar and Planet. Sci. 13: Abstr. Pap. 13th Lunar and Planet. Sci. Conf., Houston, Tex., March 15–19, 1982. Pt 2, Houston, Tex., pp. 653–654
  149. King D.T. Petruny Jr. and L.W. (2002). COSMIC IMPACT IN THE COASTAL PLAIN OF MISSISSIPPI? THE RIDDLE THE OF THE KILMICHAEL STRUCTURE 65th Annual Meteoritical Society Meeting
  150. Krk
  151. T. Marjanac, A. Tomša, Lj. Marjanac, M. Calogovic & S. Fazinic (2015). Krk impact structure ejecta breccia and melt rocks on the islands of Krk and Rab, Croatian Adriatic: A clue on the impact target lithology, Bridging the Gap III (2015)
  152. Kurai Basin
  153. S. A. Vishnevsky (2007). The Kurai Basin, Altai mountains (Russia): First evidences of impact origin, Lunar and Planetary Science XXXVIII (2007)
  154. La Dulce
  155. Labynkyr
  156. Dietz, Robert S.; McHone, John (1974). "Impact structures from ERTS imagery". Meteoritics. 9: 329. Bibcode:1974Metic...9..329D.
  157. Roger Weller. Labynkyr ring
  158. Lac Iro
  159. James B. Garvin (1986). POSSIBLE IMPACT STRUCTURES IN CENTRAL AFRICA
  160. Lairg
  161. (in Russian) Lake Cheko
  162. Tai Hu
  163. Roger Weller. Tai Hu crater
  164. Wang, K.; Geldsetzer, H. H. J. (1992). "A late Devonian impact event and its association with a possible extinction event on Eastern Gondwana". Lunar and Planetary Inst., International Conference on Large Meteorite Impacts and Planetary Evolution: 77. Bibcode:1992lmip.conf...77W.
  165. Loch Leven
  166. B. J. Hamill (2003). The Loch Leven Crater: Anatomy Of A Low-Angle Oblique Impact Structure, Large Meteorite Impacts
  167. Lorne
  168. Tonkin, P. C. (1998). "Lorne Basin, New South Wales: Evidence for a possible impact origin?". Australian Journal of Earth Sciences. 45 (5): 669–671. Bibcode:1998AuJES..45..669T. doi:10.1080/08120099808728423.
  169. Lycksele 2
  170. D. Nisca, H. Thunehed, L.J. Pesonen, S-Å. Elming (1997). The Lycksele structure, a huge ring formation in northern Sweden: result of an impact?, Large Meteorite Impacts and Planetary Evolution
  171. Pesonen, L. J. (1996). "The impact cratering record of Fennoscandia". Earth, Moon, and Planets. 72 (1–3): 377–393. Bibcode:1996EM&P...72..377P. doi:10.1007/BF00117542.
  172. Madagascar 3
  173. Roger Weller. Madagascar structure
  174. Magyarmecske
  175. Tamas Bodoky et al. (2007). Is the Magyarmecske telluric conductivity anomaly a buried impact structure?
  176. Bodoky Tamas, Kis Marta, Kummer Istvan, Don Gyorgy (2006). The telluric conductivity anomaly at magyarmecske: is it a buried impact crater?. 40th ESLAB First International Conference on Impact Cratering in the Solar System, Noordwijk, The Netherlands
  177. Bodoky T., Kis M., Kummer I., Don Gy. (2006). Geophysical signatures indicate a possible impact crater in Sw-Hungary. 40 ESLAB Symposium: 1 International Conference on Impact Cratering in the Solar System, Noordwijk, 8–12 May 2006, Noordwijk: ESA, p. 111
  178. Mahuika
  179. Abbott, D.H., A. Matzen, E.A. Bryant, and S.F. Pekar (2003). Did a bolide impact cause catastrophic tsunamis in Australia and New Zealand?. Geological Society of America Abstracts with Programs, 35:168
  180. Maniitsoq
  181. Garde, Adam A.; McDonald, Iain; Dyck, Brendan; Keulen, Nynke (2012). "Searching for giant, ancient impact structures on Earth: The Mesoarchaean Maniitsoq structure, West Greenland". Earth and Planetary Science Letters. 337–338: 197–210. Bibcode:2012E&PSL.337..197G. doi:10.1016/j.epsl.2012.04.026.
  182. Scherst, Anders; Garde, Adam A. (30 July 2013). "Complete hydrothermal re-equilibration of zircon in the Maniitsoq structure, West Greenland: A 3001 Ma minimum age of impact?". Meteoritics & Planetary Science. 48 (8): 1472–1498. Bibcode:2013M&PS...48.1472S. doi:10.1111/maps.12169.
  183. Mejaouda
  184. Roger Weller. Mejaouda crater
  185. Merewether crater
  186. J. B. Garvin and J. J. Frawley (2008). Geometric Properties Of The Merewether Structure, Newfoundland, Canada.Lunar and Planetary Science XXXIX (2008)
  187. Meseta de la Barda Negra
  188. A.C. Ocampo, A.C. Garrido, J. Rabassa, M.C. Rocca, J.C. Echaurren, and E. Mazzoni (2005). A Possible Impact Crater In Basalt At Meseta De La Barda Negra, Neuquen, Argentina, 68th Annual Meteoritical Society Meeting
  189. Middle Urals
  190. G. Burba (1991). Middle-Urals Ring structure, USSR: Definition, description, possible planetary analogues, Lunar and Planetary Science conference XXII.
  191. G. Burba (2003). The geologic evolution of the Ural Mountains: A supposed exposure to a giant impact. Microsymposium 38, MS011
  192. Mistassini
  193. S. Genest and F. Robert The Mistassini-Otish impact structure, Northern Quebec, Canada: an update – 1987
  194. Mount Ashmore
  195. Glikson, A.; Jablonski, D.; Westlake, S. (2010). "Origin of the Mt Ashmore structural dome, west Bonaparte Basin, Timor Sea". Australian Journal of Earth Sciences. 57 (4): 411–430. Bibcode:2010AuJES..57..411G. doi:10.1080/08120099.2010.481327.
  196. Examining a new asteroid crater found in the Timor Sea. ScienceWise 2010, Australian National Uni
  197. Mousso
  198. Elmar Buchner, Martin Schmieder (2007). Mousso structure: a deeply eroded, medium-sized complex impact crater in northern Chad?, Journal of African Earth Sciences 49, 71–78
  199. Oikeyama
  200. Sakamoto, Masao; Gucsik, Arnold; Nishido, Hirotsugu; Ninagawa, Kiyotaka; Okumura, Tasuku; Toyoda, Shin (2010), "Micro Raman spectroscopy of anomalous planar microstructures in quartz from Mt. Oikeyama: Discovery of a probable impact crater in Japan", Meteoritics and Planetary Science, 45 (1): 32, Bibcode:2010M&PS...45...32S, doi:10.1111/j.1945-5100.2009.01003.x
  201. Mulkarra
  202. J. B. Plescia (1999). Mulkarra Impact Structure, South Australia: A Complex Impact Structure, Lunar and Planetary Science XXX
  203. Nastapoka
  204. Dietz R.S., McHone J.F. (1990). Chesterfield structure (Hudson Bay): possible astrobleme. Lunar and Planet. Sci.: Abstr. Pap. 21st Lunar and Planet. Sci. Conf., March 12–16. Vol. 21, Houston (Tex.), p. 286
  205. Brookfield Michael (2006). The great arc of eastern Hudson Bay, Canada: part of a multi-ringed impact basin. 40 ESLAB Symposium: 1 International Conference on Impact Cratering in the Solar System, Noordwijk, 8–12 May 2006, Noordwijk: ESA, p. 35
  206. Ouro Ndia
  207. Pantasma
  208. Panther Mountain
  209. Isachsen, Y.W. (1988). "Metallic spherules and a microtektite support the interpretation of a buried impact crater beneath Panther Mountain in the central Catskill Mountains, New York". 33 (4): 74. Bibcode:1998M&PSA..33R..74I. Cite journal requires |journal= (help)
  210. Isachsen Y.W., Wright S.F., Revetta F.A., Dineen R.J. (1992). The Panther mountain circular structure, a possible buried meteorite crater. Pap. Present. Int. Conf. Large Meteorite Impacts and Planet. Evol., Sudbury, Aug. 31 – Sept. 2, 1992, Houston (Tex.), p. 40
  211. Peerless
  212. J.M. Comstock and J.R. Morrow (2000). PEERLESS STRUCTURE SOUTHWESTERN DANIELS COUNTY, MONTANA: A PROBABLE MIDORDOVICIAN IMPACT EVENT, Lunar and Planetary Science XXXI
  213. Piratininga
  214. Hachiro J. (2000). Four impact cratering on the Parana sedimentary Basin (South America). The 31st International Geological Congress, Rio de Janeiro, Aug. 6–17, 2000. Rio de Janeiro: Geol. Surv. Braz., p. 6424
  215. Praia Grande
  216. Ramgarh
  217. Nayak V.K. (1997). The circular structure at Ramgarh, India: an astrobleme(?). LPI Contrib., No. 922, p. 31
  218. Master, S.; Pandit, M.K. (1999). "New evidence for an impact origin of the Ramgarh structure, Rajasthan, India ". Meteoritics & Planetary Science. 34 (4): 79. Bibcode:1999M&PSA..34R..79M.
  219. Ross
  220. Berg J.H. (1991). Crustal xenoliths from Cape McCormick crater, Northern Victoria Land . 6th Int. Symp. Antarct. Earth Eci., Ranran-machi, 9–13 Sept., 1991, Abstr. - [Tokyo], p. 49
  221. Rubielos de la Cérida
  222. Bohor B.F., Foord E.E., Modreski P.J. (1985). Extraterrestrially-derived magnesioferrite at the K-T boundary, Caravaca, Spain. Lunar and Planet. Sci. Vol. 16: Abstr. Pap. 16th Conf., March 11–15, 1985. Pt 1, Houston, Tex., pp. 77–78
  223. Langenhorst F., Deutsch A. (1996). The Azuara and Rubielos strictures, Spain: Twin impact craters of Alpine thrust systems? TEM investigation on deformed quartz disprove shock origin. Lunar and Planet. Sci., Vol.27, pp. 725–726
  224. Sakhalinka
  225. B. Levin, E. Gretskaya, G. Nemchenko (2006). A new astrobleme in the Pacific Ocean, Doklady Earth Sciences, 2006, Vol. 411, No. 8, pp. 1336–1338.
  226. Bostwick Jennifer A., Kyte Frank T. (1993). Impact mineralogy and chemistry of the cretaceous-tertiary boundary at DSDP site 576. Lunar and Planet. Sci. Vol. 24. Abstr. Pap. 24th Lunar and Planet. Sci. Conf., March 15–19, 1993. Pt 1., Houston (Tex.), p. 157
  227. Kyte Frank T., Bostwick Jennifer A. (1995). Magnesioferrite spinel in cretaceous/tertiary boundary sediments of the Pacific basin: remnants of hot, early ejecta from the chicxulub impact?. Earth and Planet. Sci. Lett., Vol. 132, No. 1, pp. 113–123
  228. Kyte Frank T. (1996). A piece of the KT bolide?. Lunar and Planet. Sci. Vol. 27. Abstr. Pap. 27th Lunar and Planet. Sci. Conf., March 18–22, 1996. Pt 2, Houston (Tex.), p. 717
  229. São Miguel do Tapuio
  230. W. D. MacDonald, A. P. Crosta, J. Francolin (2006) Structural Dome At São Miguel do Tapuio, Piaui, Brazil, 69th Annual Meteoritical Society Meeting
  231. Castelo Branco R.M.G. (2000). Some evidences on northeast Brazilian impact structures (astroblemes). The 31st International Geological Congress, Rio de Janeiro, Aug. 6–17, 2000, Rio de Janeiro: Geol. Surv. Braz., p. 4479
  232. Castelo Branco R.M.G., Lopes de Castro D. (2004). Geological, geophysical and imaging data of Sao Miguel do Tapuio (SMT) astrobleme, Brazil. 67th Annual Meteoritical Society Meeting
  233. Shanghewan
  234. Dietz, R. S.; McHone, J. F. (1991). "Astroblemes Recently Confirmed with Shatter Cones". 54Th Annual Meeting of the Meteoritical Society. 54: 56. Bibcode:1991LPICo.766...56D.
  235. Wu, S. (1988). "The Shanghewan Impact Crater, China". Lunar and Planetary Science Conference. 19: 1296. Bibcode:1988LPI....19.1296W.
  236. Shiva
  237. Shiyli
  238. S. A. Vishnevsky (2007). Shiyli Dome, Kazakhstan: Origin Of Central Uplift By Elastic Response, Workshop on Impact Cratering II
  239. Silverpit
  240. Stewart SA, Allen PJ (2002). "A 20-km-diameter multi-ringed impact structure in the North Sea". Nature. 418 (6897): 520–523. Bibcode:2002Natur.418..520S. doi:10.1038/nature00914. PMID 12152076.
  241. Smith Kevin (2004). The North Sea Silverpit Crater: impact structure of pull-apart basin?. J. Geol. Soc., Vol. 161, No. 4, pp. 593–602
  242. Collins G.S., Turtle E.P., Melosh H.J. (2003). Numerical simulations of silverpit crater collapse: a comparison of Tekton and SALES . LPI Contrib., No. 1155, p. 18
  243. Stratford R. (2004). Bombarded Britain: A Search for British Impact Structures // Imperial College Press, London
  244. Collins G., Pain C. C., Wilson C. (2006) MODELLING IMPACT CRATER COLLAPSE IN THREE DIMENSIONS
  245. Conway Z.K., Haszeldine S., Rider M. (2006). Determining the origin of the Silverpit crater, UK southern North Sea: can you prove the existence of a meterorite crater without geochemical or mineralogical data?. 40 ESLAB Symposium: 1 International Conference on Impact Cratering in the Solar System, Noordwijk, 8–12 May 2006, Noordwijk: ESA, P. 53
  246. Cartwright J., Davies R., Stewart S., Wall M. (2006) BURIAL OF THE SILVERPIT METEORITE CRATER
  247. Sirente
  248. Speranza, F.; Nicolosi, I.; Ricchetti, N.; Etiope, G.; Rochette, P.; Sagnotti, L.; De Ritis, R.; Chiappani, M. (2009). "The "Sirente crater field", Italy". J. Geophys. Res. B. 114 (3): B03103/1. doi:10.1029/2008JB005759.
  249. Mikheeva, A.V., 2019. Sithylemenkat Lake (Sythylemenkat) USA, Alaska, The Complete Catalog of the Earth's Impact structures, ICM&MG SB RAS
  250. Cannon, P.J. (1977). "Meteorite impact crater discovered in central Alaska with Landsat imagery". Science. 196 (4296): 1322–1324. Bibcode:1977Sci...196.1322C. doi:10.1126/science.196.4296.1322. PMID 17831748.
  251. Patton Jr, W.W., Miller, T.P. and Cannon, P.J., 1978. Meteorite impact crater in central Alaska. Science, 201(4352), pp. 279–279.
  252. Rajmon, D., 2012. David Rajmon Global Impact Crater GIS Project AAPG Datapages, Tulsa Oklahoma: American Association of Petroleum Geologists.
  253. Smerdyacheye
  254. L. L. Kashkarov, D. D. Badjukov, A. I. Ivliev, G. V. Kalinina, and M. A. Nazarov, Vernadsky (2005). The Smerdyacheye Lake: New Evidence For Impact Origin And Formation Age, Lunar and Planetary Science XXXVI
  255. Bayuda
  256. A. Sparavigna (2010) Crater-Like Landform in Bayuda Desert (A Processing of Satellite Images)
  257. A. Sparavigna Craters and ring complexes of the North-East Sudanese country
  258. Red Sea Hills
  259. G. Di Achille (2005). A New Candidate Impact Site In Northeastern Sudan Detected From Remote Sensing, Lunar and Planetary Science XXXVI
  260. Chabou M.Ch. (2016). AN UPDATED INVENTORY OF METEORITE IMPACT STRUCTURES IN THE ARAB WORLD // Conference: First ArabGU International Conference (AIC-1). February 17–18, 2016. At: FSTGAT-USTHB, Algiers, ALGERIA.
  261. Svetloyar Lake
  262. V. Feldman, A. Kiselev (2008). Shock-melted impactites at the Svetloyar meteorite crater Volga area, Russia, Lunar and Planetary Science XXXIX
  263. Takamatsu
  264. Y. Miura (2007) Analyses Of Surface And Underground Data Of Takamatsu Crater In Japan. Lunar and Planetary Science XXXVIII
  265. Miura, Y.; Okamoto, M.; Fukuchi, T.; Sato, H.; Kono, Y.; Furumoto, M. (1995). "Takamatsu Crater Structure: Preliminary Report of Impact Crater in Active Orogenic Region". Lunar and Planetary Science Conference. 26: 987. Bibcode:1995LPI....26..987M.
  266. Miura Y. (2002). Shocked quartz materials found in Japan. 18 General Meeting of the International Mineralogical Association "Mineralogy for the New Millennium", Edingurgh, 1–6 Sept., 2002, Edinburgh: IMA, p.105
  267. Miura Y., Hirota A. (2002). Impact-related glasses in Japan. Bull. liaison Soc. fr. mineral. et cristallogr., Vol. 14, No. 1, pp. 18–19
  268. Tarek
  269. Philippe Paillou et al. (2006).An extended field of crater-shaped structures in the Gilf Kebir region, Egypt: Observations and hypotheses about their origin, Journal of African Earth Sciences
  270. Roger Weller. Tarek crater
  271. Tatarsky North
  272. B. W. Levin, S. A. Vishnevsky, and N. A. Palchik (2010). Underwater depressions on the bottom of the Tatarsky Strait, the Sea of Japan (western coast of the Sakhalin Island, Russia): possible marine impact craters, 41st Lunar and Planetary Science Conference
  273. Tatarsky South
  274. Tefé
  275. J. de Menezes, C. de Souza, F. Fortes, and C. Filho (1999). Geophysical Evidence Of A Possible Impact Structure At The K-T Boundary Of The Solimões Basin, Brazil, 6th International Congress of the Brazilian Geophysical Society
  276. Talundilly
  277. K. Bron (2015) The Tookoonooka-Talundilly tsunami sequence: constraining marine impact stratigraphy, Australian School of Petroleum, The University of Adelaide
  278. Gostin, V. A.; Therriault, A. M. (1997). "Tookoonooka, a large buried Early Cretaceous impact structure in the Eromanga Basin of southwestern Queensland, Australia". Meteoritics and Planetary Science. 32 (4): 593–599. Bibcode:1997M&PS...32..593G. doi:10.1111/j.1945-5100.1997.tb01303.x. PMID 11540422.
  279. Temimichat
  280. Roger Weller. Temimichat crater
  281. Tsenkher
  282. G. Komatsu et al. (2015)The Tsenkher structure, Gobi-Altai, Mongolia: A probable impact crater with well-preserved rampart ejecta. 46th Lunar and Planetary Science Conference (2015)
  283. Khosbayar P., Ariunbileg Kh. (2000). Impact structure in Mongolia . The 31st International Geological Congress, Rio de Janeiro, Aug. 6–17, 2000, Rio de Janeiro: Geol. Surv. Braz, p. 6429
  284. Toms Canyon
  285. Glass B.P. (1987). Coesite associated with North American tektite debris in DSDP site 612 on the continental slope off NEW Jersey . Lunar and Planet. Sci. Houston (Tex.), s.a.. Vol. 18: 18th Conf., Houston Tex., March 16–20, 1987: Abstr. Pap., pp. 328–329
  286. Poag C.Wylie, Poppe Lawrence J. (1998). The Toms Canyon structure, New Jersey outer continental shelf: A possible late Eocene impact crater . Mar. Geol., Vol. 145, No. 1, pp. 23–60
  287. Obasi, Christian C.; Terry, Dennis O.(Jr); Myer, George H.; Grandstaff, David E. (2011). Glauconite composition and morphology, shocked quartz, and the origin of the Cretaceous(?) Main Fossiliferous Layer (MFL) in Southern New Jersey J. Sediment. Res., Vol. 81, No. 7, pp. 479–494
  288. Umm al Binni
  289. Ust-Kara
  290. C. Koeberl (1990). The Kara/Ust-Kara twin impact structure. Geological Society of America, special paper.
  291. Vélingara
  292. S. Wade, M. Barbieri, J. Lichtenegger (2001) The Velingara Circular Structure Esa Bulletin June 2001
  293. Versailles
  294. Harris, James B.; Jones, Daniel R.; Street, R. L. (1991). "A Shallow Seismic Refraction Study of the Versailles Cryptoexplosion Structure, Central Kentucky". Meteoritics. 26 (1): 47. Bibcode:1991Metic..26...47H. doi:10.1111/j.1945-5100.1991.tb01014.x.
  295. Vichada
  296. Victoria Island
  297. Warburton East
  298. Stephen Luntz (2013). Huge Asteroid Impact Identified. Australasian Science
  299. UQ Researcher Discovers Giant Asteroid Impact, University News and Information Service (2010)
  300. World's largest asteroid impact zone found in Australia: Meteorite broke in two, leaving two craters each 200 km across. Mar 24, 2015
  301. Weaubleau
  302. Cox M. R., Evans K. R., Miller J. F., Plymate T. G. (2006) GEOLOGIC MAPPING OF THE WEAUBLEAU STRUCTURE, WEST-CENTRAL MISSOURI
  303. Cox M. R., Davis G. H., Evans K. R., Miller J. F., Rovery C. W. (2006) EMPLACEMENT OF BRECCIAS IN THE WEAUBLEAU STRUCTURE, MISSOURI, USA: IMPLICATIONS FOR ENVIRONMENTAL DISTURBANCE IN A SHALLOW-MARINE CARBONATE SETTING
  304. Wembo-Nyama
  305. G. Monegato; M. Massironi & E. Martellato (2010). "The Ring Structure of Wembo-Nyama (Eastern Kasai, R.D. Congo): A Possible Impact Crater in Central Africa" (PDF). Lunar and Planetary Science. XLI (1533): 1601. Bibcode:2010LPI....41.1601M.
  306. "Ring may be giant 'impact crater'". BBC News. 2010-03-10. Retrieved 2010-05-08.
  307. Wilkes Land 2
  308. Woodbury
  309. E. F. Albin and R. S. Harris (2016). WOODBURY ASTROBLEME: FURTHER EVIDENCE FOR A LATE PROTEROZOIC IMPACT STRUCTURE IN WEST-CENTRAL GEORGIA, US, 47th Lunar and Planetary Science Conference
  310. Yallalie
  311. Dentith, M.; Bevan, A.; Backhouse, J.; Featherstone, W.; Koeberl, C. (1999). "Yallalie: a Buried Structure of Possible Impact Origin in the Perth Basin, Western Australia". Geological Magazine. 136 (6): 619–632. Bibcode:1999GeoM..136..619D. doi:10.1017/s0016756899003386. hdl:20.500.11937/10289.
  312. Grant, B. The Yallalie Impact Structure.
  313. Dodson J.R., Ramrath A. (2001). An Upper Pliocene lacustrine environmental record from south-Western Australia - preliminary results. Palaeogeogr., Palaeoclimatol., Palaeoecol., Vol. 167, No. 3, pp. 309–320
  314. Dodson J.R., Macphail M.K. (2004). Palynological evidence for aridity events and vegetation change during the Middle Pliocene, a warm period in Southwestern Australia . Glob. and Planet. Change, Vol. 41, No. 3, pp. 285-307
  315. Zerelia East & West
  316. Dietrich, V. J; Lagios, E; Reusser, E; Sakkas, V; Gartzos, E; Kyriakopoulos, K (2013). "The enigmatic Zerelia twin-lakes (Thessaly, Central Greece): two potential meteorite impact Craters". Solid Earth Discussions. 5 (2): 1511–1573. Bibcode:2013SolED...5.1511D. doi:10.5194/sed-5-1511-2013. S2CID 56034694.
  317. Whitehouse, David (2003-06-23). "Space impact 'saved Christianity'". BBC News. British Broadcasting Corporation. Retrieved 2009-09-10.
  318. Sandra Blakeslee (2006). Ancient Crash, Epic Wave
  319. Master, S. (2002) Umm al Binni lake, a possible Holocene impact structure in the marshes of southern Iraq. In: Leroy, S. and Stewart, I.S. (Eds.), Environmental Catastrophes and Recovery in the Holocene, Abstracts Volume, Brunel University, UK, 29 August – 2 September 2002, pp. 56–57
  320. Stevens, G; Spooner, I; Morrow, J; Pufahl, P; Raeside, R; Grieve, RAF; Stanley, CR; Barr, SM; McMullin, D (2008). "Physical evidence of a late-glacial (Younger Dryas?) impact event in southwestern Nova Scotia". Atlantic Geology. 44: 42.
  321. Goff, James; et al. (2010). "Analysis of the Mahuika comet impact tsunami hypothesis". Marine Geology. 271 (3/4): 292–296. Bibcode:2010MGeol.271..292G. doi:10.1016/j.margeo.2010.02.020.
  322. Bourgeois, Joanne; Weiss, Robert (2009). "'Chevrons' are not mega-tsunami deposits – A sedimentologic assessment" (PDF). Geology. 37 (5): 403–406. Bibcode:2009Geo....37..403B. doi:10.1130/G25246A.1.
  323. Pinter, Nicholas; Ishman, Scott E. (2008). "Impacts, mega-tsunami, and other extraordinary claims" (PDF). GSA Today. 18: 37. doi:10.1130/GSAT01801GW.1.
  324. Povenmire H., Liu W. and Xianlin I. (1999) "Australasian tektites found in Guangxi Province, China", 30th Annual Lunar and Planetary Science Conference, Houston, March 1999.
  325. Glass, B. P.; Pizzuto, J. E. (1994). "Geographic variation in Australasian microtektite concentrations: Implications concerning the location and size of the source crater". Journal of Geophysical Research. 99 (E9): 19075. Bibcode:1994JGR....9919075G. doi:10.1029/94JE01866.
  326. Hartung, Jack; Koeberl, Christian (1994). "In search of the Australasian tektite source crater: The Tonle Sap hypothesis". Meteoritics. 29 (3): 411–416. Bibcode:1994Metic..29..411H. doi:10.1111/j.1945-5100.1994.tb00606.x.
  327. Vastag, Brian (18 February 2013). "Crater found in Iowa points to asteroid break-up 470 million years ago". Washington Post. Retrieved 19 February 2013.
  328. Ernstson, K.; Claudin, F.; Schüssler, U.; Hradil, K. (2002). "The mid-Tertiary Azuara and Rubielos de la Cérida paired impact structures (Spain)" (PDF). Treb. Mus. Geol. Barcelona. 11: 5–65.
  329. Magnetic anomaly map, Sudbury, Ontario and Quebec. Natural Resources Canada
  330. L. Antoine, W. Reimold, and A. Tessema (1999) The Bangui Magnetic Anomaly Revisited, 62nd Annual Meteoritical Society Meeting
  331. Howard Falcon-Lang (2010). Double space strike 'caused dinosaur extinction', BBC News
  332. Jolley, D.; Gilmour, I.; Gurov, E.; Kelley, S.; Watson, J. (2010). "Two large meteorite impacts at the Cretaceous-Paleogene boundary". Geology. 38 (9): 835–838. Bibcode:2010Geo....38..835J. doi:10.1130/G31034.1.
  333. Becker L., Shukolyukov A., Macassic C., Lugmair G. & Poreda R. 2006. Extraterrestrial Chromium at the Graphite Peak P/Tr boundary and in the Bedout Impact Melt Breccia. Lunar and Planetary Science XXXVII (2006), abstract # 2321.PDF
  334. Gorder, Pam Frost (June 1, 2006). "Big Bang in Antarctica – Killer Crater Found Under Ice". Ohio State University Research News. Archived from the original on March 6, 2016.
  335. Hodych, J.P.; G.R.Dunning (1992). "Did the Manicouagan impact trigger end-of-Triassic mass extinction?". Geology. 20 (1): 51.54. Bibcode:1992Geo....20...51H. doi:10.1130/0091-7613(1992)020<0051:DTMITE>2.3.CO;2.
  336. Haldemann, A. F. C.; Kleindienst, M. R.; Churcher, C. S.; Smith, J. R.; Schwarcz, H. P.; Markham, K.; Osinski, G. (August 2005). "Mapping Impact Modified Sediments: Subtle Remote-Sensing Signatures of the Dakhleh Oasis Catastrophic Event, Western Desert, Egypt". Bulletin of the American Astronomical Society. 37: 648. Bibcode:2005DPS....37.1703H.
  337. G. Osinski, A. Haldemann, et al. (2007). Impact Glass At The Dakhleh Oasis, Egypt: Evidence For A Cratering Event Or Large Aerial Burst?, Lunar and Planetary Science XXXVIII
  338. Bland, P. A.; De Souza Filho, C. R.; Jull, A. J.; Kelley, S. P.; Hough, R. M.; Artemieva, N. A.; Pierazzo, E.; Coniglio, J.; Pinotti, L.; Evers, V.; Kearsley, A. T. (2002). "A Possible Tektite Strewn Field in the Argentinian Pampa". Science. 296 (5570): 1109–1111. Bibcode:2002Sci...296.1109B. doi:10.1126/science.1068345. PMID 12004127.
  339. H. Povenmire, R. S. Harris, and J. H. Cornec (2011). The New Central American Tektite and Strewn Field. 42nd Lunar and Planetary Science Conference, Houston, Texas. abstract no. 1224.
  340. H. Povenmire, B. Burrer, J. H. Cornec, and R. S. Harris (2012). The New Central American Tektite Strewn Field Update. 43rd Lunar and Planetary Science Conference, Houston, Texas. abstract no. 1260.
  341. Drake, Simon M.; Beard, Andrew D.; Jones, Adrian P.; Brown, David J.; Fortes, A. Dominic; Millar, Ian L.; Carter, Andrew; Baca, Jergus; Downes, Hilary (2017). "Discovery of a meteoritic ejecta layer containing unmelted impactor fragments at the base of Paleocene lavas, Isle of Skye, Scotland". Geology. 46 (2): 171. Bibcode:2018Geo....46..171D. doi:10.1130/g39452.1.
  342. Simms, Michael J. (December 2015). "The Stac Fada impact ejecta deposit and the Lairg Gravity Low: evidence for a buried Precambrian impact crater in Scotland?". Proceedings of the Geologists' Association. 126 (6): 742–761. doi:10.1016/j.pgeola.2015.08.010. Retrieved 5 April 2017.
  343. “Scientists reconstruct ancient impact that dwarfs dinosaur-extinction blast”, American Geophysical Union, April 9, 2014
  344. McKirdy, Euan. "This apocalyptic asteroid's impact was bigger than one that killed dinosaurs". CNN. Retrieved 19 May 2016.
  345. Weidinger JT, Korup O (2008). "Frictionite as evidence for a large Late Quaternary rockslide near Kanchenjunga, Sikkim Himalayas, India – Implications for extreme events in mountain relief destruction". Geomorphology. 103 (1): 57–65. Bibcode:2009Geomo.103...57W. doi:10.1016/j.geomorph.2007.10.021.
  346. Mika McKinnon (2015). This Is Not A Crater, So What Is It? at space.gizmodo.com
  347. Roger Weller. Semsiyat crater
  348. Dietz, R.S.; Fudali, R.; Cassidy, W. (1969). "Richat and Semsiyat Domes (Mauritania): Not Astroblemes". Geological Society of America. 80 (7): 1367–1372. Bibcode:1969GSAB...80.1367D. doi:10.1130/0016-7606(1969)80[1367:rasdmn]2.0.co;2.

Bibliography

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.