Solar eclipse of July 3, 2065
A partial solar eclipse will occur on July 3, 2065.
Solar eclipse of July 3, 2065 | |
---|---|
Map | |
Type of eclipse | |
Nature | Partial |
Gamma | 1.4619 |
Magnitude | 0.1638 |
Maximum eclipse | |
Coordinates | 64.8°N 71.9°E |
Times (UTC) | |
Greatest eclipse | 17:33:52 |
References | |
Saros | 118 (71 of 72) |
Catalog # (SE5000) | 9654 |
Related eclipses
Solar eclipses 2065–2069
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]
Solar eclipse series sets from 2065–2069 | ||||
---|---|---|---|---|
Descending node | Ascending node | |||
118 | July 3, 2065 Partial |
123 | December 27, 2065 Partial | |
128 | June 22, 2066 Annular |
133 | December 17, 2066 Total | |
138 | June 11, 2067 Annular |
143 | December 6, 2067 Hybrid | |
148 | May 31, 2068 Total |
153 | November 24, 2068 Partial | |
158 | May 20, 2069 Partial |
Saros 118
It is a part of Saros cycle 118, repeating every 18 years, 11 days, containing 72 events. The series started with partial solar eclipse on May 24, 803 AD. It contains total eclipses from August 19, 947 AD through October 25, 1650, hybrid eclipses on November 4, 1668 and November 15, 1686, and annular eclipses from November 27, 1704 through April 30, 1957. The series ends at member 72 as a partial eclipse on July 15, 2083. The longest duration of total was 6 minutes, 59 seconds on May 16, 1398.
Series members 62–72 occur between 1901 and 2083: | ||
---|---|---|
62 | 63 | 64 |
Mar 29, 1903 |
Apr 8, 1921 |
Apr 19, 1939 |
65 | 66 | 67 |
Apr 30, 1957 |
May 11, 1975 |
May 21, 1993 |
68 | 69 | 70 |
Jun 1, 2011 |
Jun 12, 2029 |
Jun 23, 2047 |
71 | 72 | |
Jul 3, 2065 |
Jul 15, 2083 |
References
- van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
External links
- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC