Solar eclipse of May 20, 1947

A total solar eclipse occurred on May 20, 1947. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Chile including the capital city Santiago, Argentina, Paraguay, Brazil, Liberia, French West Africa (the parts now belonging to Ivory Coast and Benin), British Gold Coast (today's Ghana) including capital Accra, French Togoland (today's Togo) including capital Lomé, British Nigeria (today's Nigeria) including capital Lagos, French Cameroons (now belonging to Cameroon), French Equatorial Africa (the parts now belonging to Central African Republic and R. Congo), Belgian Congo (today's DR Congo), British Uganda (today's Uganda), British Tanganyika (now belonging to Tanzania), and British Kenya (today's Kenya). The southern part of Aconcagua, the highest mountain outside Asia, and Iguazu Falls, one of the largest waterfalls systems in the world, lie in the path of totality.

Solar eclipse of May 20, 1947
Map
Type of eclipse
NatureTotal
Gamma-0.3528
Magnitude1.0557
Maximum eclipse
Duration313 sec (5 m 13 s)
Coordinates0.2°N 21.4°W / 0.2; -21.4
Max. width of band196 km (122 mi)
Times (UTC)
Greatest eclipse13:47:47
References
Saros127 (54 of 82)
Catalog # (SE5000)9392

Solar eclipses 1946–1949

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Solar eclipse series sets from 1946–1949
Ascending node   Descending node
117May 30, 1946

Partial
122November 23, 1946

Partial
127May 20, 1947

Total
132November 12, 1947

Annular
137May 9, 1948

Annular
142November 1, 1948

Total
147April 28, 1949

Partial
152October 21, 1949

Partial

Saros 127

It is a part of Saros cycle 127, repeating every 18 years, 11 days, containing 82 events. The series started with partial solar eclipse on October 10, 991 AD. It contains total eclipses from May 14, 1352 through August 15, 2091. There are no annular eclipses in this series. The series ends at member 82 as a partial eclipse on March 21, 2452. The longest duration of totality was 5 minutes, 40 seconds on August 30, 1532. All eclipses in this series occurs at the Moon’s ascending node.[2]

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

References

  1. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. "Solar Saros series 127". NASA Goddard Space Flight Center. NASA. Retrieved 2 November 2017.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.