Solar eclipse of March 30, 2033

A total solar eclipse will occur on March 30, 2033. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

Solar eclipse of March 30, 2033
Map
Type of eclipse
NatureTotal
Gamma0.9778
Magnitude1.0462
Maximum eclipse
Duration157 sec (2 m 37 s)
Coordinates71.3°N 155.8°W / 71.3; -155.8
Max. width of band781 km (485 mi)
Times (UTC)
Greatest eclipse18:02:36
References
Saros120 (62 of 71)
Catalog # (SE5000)9581

Totality will be visible in Nome, Alaska, Utqiagvik, Alaska and Chukchi Peninsula in the mid-morning hours. This is the last of 55 umbral eclipses of Solar Saros 120. The 1st was in 1059. The total duration is 974 years.

Images


Animated path

Solar eclipses of 2033–2036

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Saros 120

This eclipse is a part of Saros cycle 120, repeating every 18 years, 11 days, containing 71 events. The series started with partial solar eclipse on May 27, 933 AD, and reached an annular eclipse on August 11, 1059. It was a hybrid event for 3 dates: May 8, 1510, through May 29, 1546, and total eclipses from June 8, 1564, through March 30, 2033. The series ends at member 71 as a partial eclipse on July 7, 2195. The longest duration of totality was 2 minutes, 50 seconds on March 9, 1997. All eclipses in this series occurs at the Moon’s descending node.

Metonic cycle

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days).

References

  1. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.