M-V

The M-V rocket, also called M-5 or Mu-5, was a Japanese solid-fuel rocket designed to launch scientific satellites. It was a member of the Mu family of rockets. The Institute of Space and Astronautical Science (ISAS) began developing the M-V in 1990 at a cost of 15 billion yen. It has three stages and is 30.7 meters (101 ft) high, 2.5 meters (8 ft 2 in) in diameter, and weighs about 140 tonnes (310,000 pounds). It was capable of launching a satellite weighing 1.8 tonnes (2 short tons) into an orbit as high as 250 km (160 mi).

M-V
The fifth M-V launches with the ASTRO-EII spacecraft.
FunctionAll-solid small orbital launch vehicle
ManufacturerNissan Motors[1] (-2000)
IHI AEROSPACE (-2006)[2]
Country of originJapan
Size
Height30.8 m (101 ft)
Diameter2.5 m (8.2 ft)
Mass137,500–139,000 kg (303,100–306,400 lb)
Stages3 or 4
Capacity
Payload to LEO
Mass1,800 kg (4,000 lb)
Payload to Polar LEO
Mass1,300 kg (2,900 lb)
Launch history
StatusRetired
Launch sitesUchinoura M-V
Total launches7 (M-V: 4, M-V KM: 3)
Success(es)6 (M-V: 3, M-V KM: 3)
Failure(s)1 (M-V)
First flightM-V: 10 February 2000
M-V KM: 12 February 1997
Last flightM-V: 22 September 2006
M-V KM: 9 May 2003
Notable payloadsHALCA, Nozomi,
ASTRO-E, Hayabusa
Suzaku, AKARI
Hinode
First stage – M-14
Motor1 Solid
Thrust3,780.345 kN (849,855 lbf)
Specific impulse246 s (2.41 km/s)
Burn time46 seconds
FuelSolid
Second stage – M-24
Motor1 Solid
Thrust1,245.287 kN (279,952 lbf)
Specific impulse203 s (1.99 km/s)
Burn time71 seconds
FuelSolid
Third stage – M-34
Motor1 Solid
Thrust294 kN (66,000 lbf)
Specific impulse301 s (2.95 km/s)
Burn time102 seconds
FuelSolid
Fourth stage (M-V KM) – KM-V1
Motor1 Solid
Thrust51.9 kN (11,700 lbf)
Specific impulse298 s (2.92 km/s)
Burn time73 seconds
FuelSolid

The first M-V rocket launched the HALCA radio astronomy satellite in 1997, and the second the Nozomi Mars explorer in July 1998. The third rocket attempted to launch the Astro-E X-ray satellite on February 10, 2000 but failed.

ISAS recovered from this setback and launched Hayabusa to 25143 Itokawa in 2003.

The following M-V launch was the scientific Astro-E2 satellite, a replacement for Astro-E, which took place on July 10, 2005.

The final launch was that of the Hinode (SOLAR-B) spacecraft, along with the SSSat microsat and a nanosatellite, HIT-SAT, on 22 September 2006.

Launch outcomes

0.5
1
1.5
2
1997
'98
'99
2000
'01
'02
'03
'04
'05
'06
  •   Failure
  •   Success

Launch history

Flight № Date / time (UTC) Rocket,
Configuration
Launch site Payload Payload mass Orbit Customer Launch
outcome
M-V-1 February 12, 1997
04:50:00
M-V Uchinoura M-V MUSES-B (HALCA)[3] Success
M-V-3 July 3, 1998
18:12:00
M-V Uchinoura M-V PLANET-B (Nozomi) Success
M-V-4 February 10, 2000
01:30:00
M-V Uchinoura M-V ASTRO-E Failure
M-V-5 May 9, 2003
04:29:25
M-V Uchinoura M-V MUSES-C (Hayabusa) Success
M-V-6 July 10, 2005
03:30:00
M-V Uchinoura M-V ASTRO-E2 (Suzaku) Success
M-V-8 February 21, 2006
21:28:00
M-V Uchinoura M-V ASTRO-F (Akari)
CUTE-1.7 + APD
SSP (solar sail sub payload)
Success
SSP failed to open completely
M-V-7 September 22, 2006
21:36
M-V Uchinoura M-V SOLAR-B (Hinode)
HIT-SAT
SSSat (solar sail)
Success
SSSat failed after launch
M-V rocket with the ASTRO-E satellite.

Following program

A follow on to the M-V, called the Epsilon Rocket,[4] features a lower 1.2 tonne LEO payload capability. The development aim is to reduce costs, primarily by using the H-IIA solid rocket booster as the first stage and through shorter launch preparation time. Epsilon launches are intended to cost much less than the $70 million launch cost of a M-V.[5]

The first launch, of a small scientific satellite SPRINT-A (Hisaki), took place in September 2013. The initial launches will be of a two-stage version, of Epsilon, with up to a 500 kilogram LEO payload capability.[6]

Potential as an intercontinental ballistic missile

Solid fuel rockets are the design of choice for military applications as they can remain in storage for long periods, and then reliably launch at short notice.

Lawmakers made national security arguments for keeping Japan's solid-fuel rocket technology alive after ISAS was merged into JAXA, which also has the H-IIA liquid-fuelled rocket, in 2003. The ISAS director of external affairs, Yasunori Matogawa, said, "It seems the hard-line national security proponents in parliament are increasing their influence, and they aren't getting much criticism…I think we’re moving into a very dangerous period. When you consider the current environment and the threat from North Korea, it’s scary."[7]

Toshiyuki Shikata, a Tokyo Metropolitan Government adviser and former lieutenant general, claimed that part of the rationale for the fifth M-V Hayabusa mission was that the reentry and landing of its return capsule demonstrated "that Japan's ballistic missile capability is credible."[8]

At a technical level the M-V design could be weaponised quickly (as an Intercontinental ballistic missile, since only payload and guidance have to be changed) although this would be politically unlikely.[9] The M-V is comparable in performance to the LGM-118 Peacekeeper ICBM.

Comparable solid fuel rockets

See also

References

  1. Travis S. Taylor (2009). Introduction to Rocket Science and Engineering. CRC Press. p. 25. ISBN 978-1-4200-7529-8.
  2. "Projects&Products". IHI AEROSPACE. Archived from the original on 2011-04-06. Retrieved 2011-03-08.
  3. Japan Aerospace Exploration Agency | JAXA. "HALCA > Launch Vehicle". Institute of Space and Astronautical Science. Archived from the original on 2 July 2005.
  4. "Epsilon launch vehicle". JAXA. Retrieved 2010-04-01.
  5. "Asteroid probe, rocket get nod from Japanese panel". Spaceflight Now. 11 August 2010. Retrieved 29 October 2012.
  6. "Interview: Yasuhiro Morita, Project Manager, Epsilon Launch Vehicle". JAXA. Retrieved 29 October 2012.
  7. Karl Schoenberger (July 11, 2003). "Japan ponders nuclear weapons". Detroit Free Press. Archived from the original on June 25, 2004.
  8. Chester Dawson (28 October 2011). "In Japan, Provocative Case for Staying Nuclear". Wall Street Journal. Retrieved 13 November 2011.
  9. William E. Rapp (January 2004). "Paths Diverging? The Next Decade in the US-Japan Security Alliance" (PDF). Strategic Studies Institute, U.S. Army War College: 82. Retrieved 29 October 2012. 119. Japan has the weapons grade plutonium, technology for weaponization, and delivery means in the M-V-5 rocket, indigenous, solid fueled, 1800 kg payload capacity, to go nuclear very rapidly should it choose. This dramatic step, however, would require a complete loss of faith in the American nuclear umbrella Cite journal requires |journal= (help)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.