Comparison of orbital launch systems
This comparison of orbital launch systems lists the attributes of all individual rocket configurations designed to reach orbit. A first list contains rockets that are currently operational or in development; a second list includes all retired rockets. For the simple list of all conventional launcher families, see: Comparison of orbital launchers families. For the list of predominantly solid-fueled orbital launch systems, see: Comparison of solid-fueled orbital launch systems.
Spacecraft propulsion[note 1] is any method used to accelerate spacecraft and artificial satellites. A conventional solid rocket or a conventional solid-fuel rocket is a rocket with a motor that uses solid propellants (fuel/oxidizer).[note 2] Orbital launch systems are rockets and other systems capable of placing payloads into or beyond Earth orbit. All current spacecraft use conventional chemical rockets (bipropellant or solid-fuel) for launch, though some[note 3] have used air-breathing engines on their first stage.[note 4]
Current and upcoming rockets
Orbits legend:
- LEO, low Earth orbit
- SSO or SSPO, near-polar Sun-synchronous orbit
- polar, polar orbit
- MEO, medium Earth orbit
- GTO, geostationary transfer orbit
- GEO, geostationary orbit (direct injection)
- HEO, high Earth orbit
- HCO, heliocentric orbit
- TLI, trans-lunar injection
- TMI, trans-Mars injection
- Launch system status legend
- Under developmentOperational
- Suborbital flight tests and on-pad explosions are excluded, but launches failing en route to orbit are included.
- Effective year for active rockets, planned year for rockets in development
- A suborbital flight was conducted in 2014 as Angara-1.2pp, testing only the first and second stages.[6]
- Reference altitude 500 km
- Upgraded to 11,115 kg by 2020[11]
- for Starliner[16]
- GTO payload is 5,550 kg when the first stage lands downrange on a drone ship (ASDS). Reduced to 3,500 kg if the first stage returns to the launch site (RTLS).[36]
- Additionally, one rocket exploded on the launch pad in 2016.[40]
- GTO payload is 8,000 kg when the core first-stage booster lands downrange on a drone ship (ASDS) and the side boosters return to the launch site (RTLS). Increased to 10,000 kg if all boosters land on drone ships.[36]
- As of 2019 Falcon Heavy has only flown in partially reusable configuration; fully expendable configuration is considered operational in the sense that it is a simplified version of the reusable configuration.
- GTO payload with enhanced engines, as of GSLV version 2A[51]
- A suborbital test flight was conducted in 2014 (designated LVM-3/CARE) without the cryogenic upper stage (CUS).[54]
- 5,100 kg to a 500-km Sun-synchronous orbit; 3,300 kg to 800 km[57]:64–65
- A suborbital test flight was conducted in April 2018.[63]
- A suborbital test flight was conducted in March 2012.[68]
- Includes 6 possible launches of CZ-2C (3) noted by Gunter Krebs in reference.[75]
- Reference altitude 400 km
- A suborbital test flight was conducted in November 2018.
- A suborbital test flight was conducted in May 2018.[111]
- Additionally, two rockets exploded on the launch pad, one in 2012 and one in 2019.[126]
- A suborbital test flight succeeded in 2016; both orbital flights in 2017 and 2019 failed.[129]
- Suborbital test flight in 2004, without Fregat upper stage.[131]
- with ICPS
- with EUS
- with EUS and
advanced boosters - A prior version of the SS-520 flew twice as a suborbital sounding rocket in 1998 and 2000. In 2017, the addition of a small third stage enabled orbital launches of ultra-light nano- or picosatellites.[149]
- A suborbital test flight failed in 2006. The first two orbital missions failed in 2009 and 2012, and the rocket finally reached orbit in late 2012.[160]
- Reference altitude 700 km
Retired and canceled rockets
- First suborbital test in 1969, first orbital launch attempt in 1970
- Without Buran, and assuming payload providing orbital insertion
- The U.S. Space Shuttle Transportation System and the Soviet Energia-Buran system consist of launch vehicle rockets and returnable spaceplane orbiter. Payload values listed here are for the mass of the payload in cargo bay of the spaceplanes, excluding the mass of the spaceplanes themselves.
- The SpaceX website lists the F9 payload to LEO as 13,150kg. The payload to GTO is listed as 4,850kg. However, SpaceX has stated that these numbers include a 30% margin to accommodate re-usability.
- Suborbital test flights in 1995, 1997 and 2002, no orbital launches attempted
- The N1 rocket was initially designed for 75mt LEO capacity and launch attempts were made with this version, but there were studies to increase the payload capacity to 90–95 mt, if a liquid-hydrogen upper stage engine could be developed.
- The Saturn V made 13 launches, 12 of which reached the correct orbits, and the other (Apollo 6) reached a different orbit than the one which had been planned; however, some mission objectives could still be completed; NASA, Saturn V News Reference, Appendix: Saturn V Flight History (1968) Archived 2011-05-17 at the Wayback Machine. For more information, see the Saturn V article. The Saturn V launch record is usually quoted as having never failed, e.g. "The rocket was masterminded by Wernher Von Braun and did not fail in any of its flights", Alan Lawrie and Robert Godwin; Saturn, but the Apollo 6 launch should be considered a partial mission failure. The 13th launch of Saturn V was in special configuration (SA-513) with the Skylab.
- A third rocket exploded before launch.
- First orbital launch attempt in 2005
Launch systems by country
The following chart shows the number of launch systems developed in each country, and broken down by operational status. Rocket variants are not distinguished; i.e., the Atlas V series is only counted once for all its configurations 401–431, 501–551, 552, and N22.
- Operational
- In development
- Retired
See also
Notes
- There are many different methods. Each method has drawbacks and advantages, and spacecraft propulsion is an active area of research. However, most spacecraft today are propelled by forcing a gas from the back/rear of the vehicle at very high speed through a supersonic de Laval nozzle. This sort of engine is called a rocket engine.
- The first medieval rockets were solid-fuel rockets powered by gunpowder; they were used by the Chinese, Indians, Mongols and Arabs, in warfare as early as the 13th century.
- Such as the Pegasus rocket and SpaceShipOne.
- Most satellites have simple reliable chemical thrusters (often monopropellant rockets) or resistojet rockets for orbital station-keeping and some use momentum wheels for attitude control. Soviet bloc satellites have used electric propulsion for decades, and newer Western geo-orbiting spacecraft are starting to use them for north-south stationkeeping and orbit raising. Interplanetary vehicles mostly use chemical rockets as well, although a few have used ion thrusters and Hall effect thrusters (two different types of electric propulsion) to great success.
- Elon Musk [@elonmusk] (31 March 2020). "Mass of initial SN ships will be a little high & Isp a little low, but, over time, it will be ~150t to LEO fully reusable" (Tweet) – via Twitter.
- Elon Musk [@elonmusk] (31 March 2020). "Mass of initial SN ships will be a little high & Isp a little low, but, over time, it will be ~150t to LEO fully reusable" (Tweet) – via Twitter.
References
- "India's Agnikul Cosmos Signs Deal With Alaska Aerospace For Test Launch Of 'Agnibaan'". 2020-10-01. Retrieved 2020-12-23.
- "Firefly Alpha". Firefly Aerospace. Retrieved 29 October 2019.
- berger, Eric (7 October 2020). "Russian space corporation unveils planned "Amur" rocket—and it looks familiar". Ars Technica. Retrieved 7 October 2020.
- "Angara Launch Vehicle Family". Khrunichev State Research and Production Space Center. Retrieved 2 September 2018.
- "Первый коммерческий запуск ракеты "Ангара" перенесли на конец 2021 года" [First commercial launch of the light Angara rocket postponed to the end of 2021]. TASS (in Russian). 12 February 2020. Retrieved 17 August 2020.
- Graham, William (9 July 2014). "Angara rocket launches on maiden flight". NASASpaceFlight.com. Retrieved 2 September 2018.
- Krebs, Gunter. "Antares (Taurus-2)". Gunter's Space Page. Retrieved 1 December 2019.
- Krebs, Gunter. "Antares 230". Gunter's Space Page. Retrieved 20 November 2019.
- "Ariane 5 Users Manual" (PDF). Issue 4. Arianespace. p. 39 (ISS orbit). Archived from the original (PDF) on 27 September 2007. Retrieved 13 November 2007.
- Clark, Stephen (2 June 2017). "Ariane 5 succeeds in launch of two high-value communications satellites". Spaceflight Now. Retrieved 17 January 2018.
- "Arianespace begins building final 10 Ariane 5s ahead of Ariane 6 operational debut". Space Daily. 10 January 2018. Retrieved 17 January 2018.
Ariane 5 set a new record in June 2017 by lofting 10,865 kg. into geostationary transfer orbit (GTO). From this payload lift record, Ariane 5's performance will be increased another 250 kg.
- Krebs, Gunter. "Ariane-5". Gunter's Space Page. Retrieved 30 November 2019.
- Lagier, Roland (March 2018). "Ariane 6 User's Manual Issue 1 Revision 0" (PDF). Arianespace. Retrieved 27 May 2018.
- Vance, Ashlee (3 February 2020). "A Small-Rocket Maker Is Running a Different Kind of Space Race". Bloomberg News. Retrieved 3 February 2020.
- Krebs, Gunter. "Atlas-5". Gunter's Space Page. Retrieved 10 August 2019.
- Egan, Barbara [@barbegan13] (October 15, 2016). "We are calling the config N22. No payload fairing with the Starliner on board" (Tweet) – via Twitter.
- Roulette, Joey (22 December 2019). "'Bull's-eye' landing in New Mexico for Boeing's Starliner astronaut capsule". Reuters. Retrieved 22 December 2019.
- "Firefly Beta". Firefly Aerospace. Retrieved 18 January 2021.
- "Bloostar Launch Vehicle Payload User's Guide" (PDF). Revision 2. Zero 2 Infinity. January 2018. Z2I-BS-TN-1-0316-R2. Retrieved 4 September 2018.
- "Perigee Aerospace Inc". Retrieved 2020-06-14.
- "Korean firm Perigee plans first South Australian rocket launch". 28 October 2019.
- Boucher, Marc (14 March 2017). "Exclusive: Maritime Launch Services Selects Nova Scotia Site for Spaceport Over 13 Other Locations". SpaceQ. Retrieved 18 March 2017.
- Krebs, Gunter. "Tsiklon-4M (Cyclone-4M)". Gunter's Space Page. Retrieved 11 April 2017.
- "Cyclone 4M fully integrated upper stage performs successful qualification test" (Press release). Yuzhnoye Design Office and Maritime Launch Services. 21 October 2019. Retrieved 1 December 2019.
- "Delta IV Launch Services User's Guide, June 2013" (PDF). United Launch Alliance. June 2013. pp. 2–10. Retrieved 9 October 2017.
- Krebs, Gunter. "Delta-4". Gunter's Space Page. Retrieved 17 March 2019.
- "Rocket Lab Increases Electron Payload Capacity, Enabling Interplanetary Missions and Reusability". Rocket Lab. Retrieved 2020-08-04.
- "Completed Missions". Rocket Lab. Retrieved 2020-06-14.
- "Projects&Products". IHI Aerospace. Archived from the original on 6 April 2011. Retrieved 8 March 2011.
- "Epsilon a solid propellant launch vehicle for new age" (PDF). IHI Aerospace. Retrieved 3 February 2018.
- Krebs, Gunter. "Epsilon". Gunter's Space Page. Retrieved 18 January 2019.
- "ERIS-S | ERIS-L". Gilmour Space Technologies. Retrieved 1 December 2019.
- "Launching small satellites to LEO from 2021/22". Gilmour Space Technologies. Retrieved 1 December 2019.
- Mogg, Trevor (May 24, 2019). "SpaceX joins internet-from-space race with launch of 60 Starlink satellites". www.digitaltrends.com.
- "Capabilities & Services". SpaceX. Retrieved 5 April 2017.
- Koenigsmann, Hans (3 October 2018). SpaceX performance tiers to GTO. IAC 2018. Retrieved 23 October 2018.
- de Selding, Peter B. (June 15, 2016). "Iridium's SpaceX launch slowed by Vandenberg bottleneck". SpaceNews. Retrieved June 21, 2016.
- Krebs, Gunter. "Falcon-9 v1.2 (Falcon-9FT)". Gunter's Space Page. Retrieved 19 November 2018.
- Krebs, Gunter. "Falcon-9 v1.2 (Block 5) (Falcon-9FT (Block 5))". Gunter's Space Page. Retrieved 20 November 2019.
- Malik, Tariq (1 September 2016). "Launchpad Explosion Destroys SpaceX Falcon 9 Rocket, Satellite in Florida". Space.com. Retrieved 1 September 2016.
- Krebs, Gunter. "Falcon-9 v1.2(ex) (Falcon-9FT(ex))". Gunter's Space Page. Retrieved 29 June 2018.
- Krebs, Gunter. "Falcon-9 v1.2 (Block 5)(ex) (Falcon-9FT (Block 5)(ex))". Gunter's Space Page. Retrieved 10 August 2019.
- Either 2 or 3 boosters recoverable
- Musk, Elon. Making Life Multiplanetary. SpaceX. Event occurs at 15:35. Retrieved 22 March 2018 – via YouTube.
BFR in fully reusable configuration, without any orbital refueling, we expect to have a payload capability of 150 tonnes to low Earth orbit and that compares to about 30 for Falcon Heavy
- Elon Musk [@elonmusk] (12 February 2018). "Side boosters landing on droneships & center expended is only ~10% performance penalty vs fully expended. Cost is only slightly higher than an expended F9, so around $95M" (Tweet) – via Twitter.
- Krebs, Gunter. "Falcon-Heavy". Gunter's Space Page. Retrieved 15 April 2019.
- Krebs, Gunter. "Falcon-Heavy (Block 5)". Gunter's Space Page. Retrieved 15 July 2019.
- "SpaceX". SpaceX. Retrieved 2020-08-29.
- "Geosynchronous Satellite Launch Vehicle (GSLV)". ISRO. Retrieved August 31, 2018.
- Subramanian, T.S. (14 September 2018). "ISRO developing vehicle to launch small satellites". Frontline. Retrieved 29 August 2018.
- Krebs, Gunter. "GSLV". Gunter's Space Page. Retrieved 19 December 2018.
- "GSLV MkIII-M1 Successfully Launches Chandrayaan-2 spacecraft - ISRO". www.isro.gov.in. Retrieved 2019-12-01.
- Krebs, Gunter. "GSLV Mk.3 (LVM-3)". Gunter's Space Page. Retrieved 10 August 2019.
- "Crew module Atmospheric Re-entry Experiment (CARE)". ISRO. 18 December 2014. Retrieved 4 September 2018.
- SASAKI, Hiroshi (August 6, 2010). "Development Plan for Future Mission from HTV System". Transactions of the Japan Society for Aeronautical and Space Sciences, Space Technology Japan. 7: 26. Bibcode:2010TrSpT...7.Tk77S. doi:10.2322/tstj.7.Tk_77 – via J-STAGE.
- "H-2B". Gunter's Space Page. Retrieved 2021-01-20.
- "H-IIA – User's Manual" (PDF). 4.0. Mitsubishi Heavy Industries, MHI Launch Services. February 2015. YET04001. Retrieved 4 September 2018.
- Krebs, Gunter. "H-2A". Gunter's Space Page. Retrieved 12 November 2018.
- Only the X00 version of the H3 is intended for LEO launches. The higher capability X02 and X03 variants could presumably launch significantly more payload to LEO, but are not specified for this mission. Space Launch Report: H3 Data Sheet, retrieved 20 Feb. 2019/
- "MHI Launch Services: Launch Vehicles". Mitsubishi Heavy Industries, MHI Launch Services. Retrieved 4 September 2018.
- 新型基幹ロケットの開発状況について [Development status of the new carrier rocket] (PDF) (in Japanese). JAXA. 2 July 2015. p. 3. Retrieved July 8, 2015.
- "First H3 launch slips to 2021". SpaceNews. 2020-09-11. Retrieved 2020-09-12.
- Jones, Andrew (15 May 2018). "Chinese commercial launch sector nears takeoff with suborbital rocket test". SpaceNews. Retrieved 16 August 2018.
- Krebs, Gunter. "Shian Quxian-1 (SQX-1, Hyperbola-1)". Gunter's Space Page. Retrieved 1 August 2019.
- Huang, Echo (25 July 2019). "A private Chinese space firm successfully launched a rocket into orbit". Quartz. Retrieved 10 August 2019.
- Krebs, Gunter. "Jielong-1 (Smart Dragon-1, SD 1)". Gunter's Space Page. Retrieved 2 November 2019.
- Krebs, Gunter. "Kaituozhe-2 (KT-2)". Gunter's Space Page. Retrieved 2 November 2019.
- Krebs, Gunter. "Kuaizhou-1 (KZ-1) / Fei Tian 1". Gunter's Space Page. Retrieved 8 January 2020.
- "快舟十一号小型固体运载火箭(KZ-11):推迟到2018年首飞" [Kuaizhou 11 small solid launch vehicle (KZ-11): First flight planned for 2018] (in Chinese). October 30, 2017. Retrieved March 10, 2018.
- "Kuai Zhou (Fast Vessel)". China Space Report. Archived from the original on March 11, 2018. Retrieved March 10, 2018.
- "China to test large solid-fuel rocket engine". China Daily. December 25, 2017. Retrieved March 10, 2018.
- Clark, Stephen (August 31, 2018). "Virgin Orbit nears first test flights with air-launched rocket". Spaceflight Now. Retrieved September 1, 2018.
- "LauncherOne service guide" (PDF). Virgin Orbit. 2017. Archived from the original (PDF) on 2018-03-28. Retrieved 2017-08-07.
- "Two satellites with secretive missions launched by China". Spaceflight Now. 12 October 2018. Retrieved 12 October 2018.
- Krebs, Gunter. "CZ-2 (Chang Zheng-2)". Gunter's Space Page. Retrieved 25 September 2019.
- "LM-3A Series Launch Vehicles User's Manual Issue 2011" (PDF). 2011. Archived from the original (PDF) on 17 July 2015. Retrieved 17 August 2015.
- Krebs, Gunter. "CZ-3 (Chang Zheng-3)". Gunter's Space Page. Retrieved 8 January 2020.
- Krebs, Gunter. "CZ-4 (Chang Zheng-4)". Gunter's Space Page. Retrieved 8 January 2020.
- Krebs, Gunter. "CZ-4C (Chang Zheng-4C)". Gunter's Space Page. Retrieved 16 August 2018.
- Qin, Xudong; Long, Lehao; Rong, Yi (April 2016). "我国航天运输系统成就与展望" [Achievements and prospects of China's space transportation system]. 深空探测学报 (Journal of Deep Space Exploration) (in Chinese). doi:10.15982/j.issn.2095-7777.2016.04.003. Retrieved 28 August 2017.
- Krebs, Gunter. "CZ-5 (Chang Zheng-5)". Gunter's Space Page. Retrieved 8 January 2020.
- Jones, Andrew (14 February 2020). "China prepares to launch new rockets as part of push to boost space program". space.com. Retrieved 14 February 2020.
- Barbosa, Rui. "China conducts debut launch of Long March 6". NASASpaceFlight.com. Retrieved 2015-09-26.
- Krebs, Gunter. "CZ-6 (Chang Zheng-6)". Gunter's Space Page. Retrieved 8 January 2020.
- ""长征七号"运载火箭具备近地轨道13.5吨、700千米太阳同步轨道5.5吨运载能力". 新华网. 2011-12-29. Archived from the original on 2015-11-02.
- Krebs, Gunter. "CZ-7 (Chang Zheng-7)". Gunter's Space Page. Retrieved 19 February 2020.
- "长征七号首飞成功 空间实验室任务大幕拉开" [Successful maiden flight of the Long March 7 mission Damulakai]. www.spacechina.com (in Chinese). 2016-06-25. Archived from the original on 28 June 2016. Retrieved 25 June 2016.
- Perrett, Bradley (30 September 2013). "Chinese Super-Heavy Launcher Designs Exceed Saturn V". Aviation Week. Retrieved 4 December 2014.
- Mizokami, Kyle (20 March 2018). "China Working on a New Heavy-Lift Rocket as Powerful as Saturn V". Retrieved 4 September 2018. Cite magazine requires
|magazine=
(help) - "China to develop new series of carrier rockets: expert". Xinhua.net. 2 July 2018. Retrieved 25 September 2018.
- Jones, Andrew (5 July 2018). "China reveals details for super-heavy-lift Long March 9 and reusable Long March 8 rockets". SpaceNews. Retrieved 4 September 2018.
- "China to launch Long March-9 rocket in 2028". Xinhua.net. 19 September 2018. Retrieved 25 September 2018.
- Chan, Kai Yee (8 October 2015). "China reveals CZ-11 anti-ASAT rocket". Chinese Daily Mail. Retrieved 4 September 2018.
- Krebs, Gunter. "CZ-11 (Chang Zheng-11)". Gunter's Space Page. Retrieved 20 September 2019.
- "Minotaur I Space Launch Vehicle—Fact Sheet" (PDF). Orbital Sciences Corporation. 2012. Retrieved 28 February 2012.
Spacecraft mass-to-orbit of up to 580 kg to LEO (28.5 deg, 185 km)
- Krebs, Gunter. "Minotaur-1 (OSP-SLV)". Gunter's Space Page. Retrieved 28 August 2017.
- "Minotaur IV – Fact sheet" (PDF). Orbital Sciences Corporation. 2010. BR06005d. Archived from the original (PDF) on 8 October 2010. Retrieved 4 March 2009.
- Krebs, Gunter. "Minotaur-3/-4/-5/-6 (OSP-2 Peacekeeper SLV)". Gunter's Space Page. Retrieved 28 August 2017.
- "Taurus". Orbital Sciences Corporation. 2012. Archived from the original on 22 July 2012.
- "Minotaur-C, Ground-Launched Space Launch Vehicle" (PDF). Orbital Sciences Corporation. 2014. FS003_02_2998. Archived from the original (PDF) on 14 July 2014.
- Krebs, Gunter. "Taurus / Minotaur-C". Gunter's Space Page. Retrieved 30 November 2017.
- Henry, Caleb (28 November 2018). "PLD Space, after ESA input, doubles lift capacity of smallsat launcher". SpaceNews. Retrieved 29 November 2018.
- "PLD Space, la ambición de lanzar satélites con cohetes reutilizables" [PLD Space, and the ambition to launch satellites with reusable rockets]. El País (in Spanish). 11 August 2020. Retrieved 17 August 2020.
- Foust, Jeff (8 March 2017). "Eutelsat first customer for Blue Origin's New Glenn". SpaceNews. Retrieved 8 March 2017.
- "Blue Origin resets schedule: First crew to space in 2019, first orbital launch in 2021". Geekwire. 10 October 2018. Retrieved 9 November 2018.
- Lin, Jeffrey; Singer, P.W. (18 December 2017). "China could become a major space power by 2050". Popular Science. Retrieved 4 September 2018.
- "Chinese space launch firm iSpace raises $173 million in series B funding". SpaceNews. 2020-08-25. Retrieved 2020-09-12.
- "Korea Space Launch Vehicle (Nuri)". Korea Aerospace Research Institute. Retrieved 1 December 2019.
- Goh, Deyana (5 July 2018). "Chinese startup One Space successfully tests first stage engine for orbital rocket". Spacetech Asia. Retrieved 16 August 2018.
- Krebs, Gunter. "OS-M (Chongqing SQX)". Gunter's Space Page. Retrieved 15 April 2019.
- Jones, Andrew (17 May 2018). "Chinese company OneSpace sends OS-X rocket to 40 km in maiden flight". GBTimes. Retrieved 17 May 2018.
- Krebs, Gunter. "Pegasus". Gunter's Space Page. Retrieved 11 October 2019.
- Clark, Stephen (11 October 2019). "NASA Awards Launch for Orbital's Pegasus Rocket". Spaceflight Now. Retrieved 11 October 2019.
- "About us". Orbex. Retrieved 4 September 2018.
Orbex can accommodate a range of payload capacities between 100kg-220kg, to altitudes of between 200km-1250km.
- Foust, Jeff (18 July 2018). "Orbex stakes claim to European smallsat launch market". SpaceNews. Retrieved 4 September 2018.
- "Proton Launch System Mission Planner's Guide Section 2 LV Performance" (PDF). International Launch Services. Retrieved 2016-04-07.
- "Proton Launch System Mission Planner's Guide, LKEB-9812-1990" (PDF). International Launch Services. p. 2. Archived from the original on 27 October 2007. Retrieved 12 November 2007.
LEO i = 51.6°, H = 200 km circular ... GTO (1800 m/s from GSO) i = 31.0°, Hp = 2100 km, Ha = 35,786 km
- Krebs, Gunter. "Proton-M Blok-DM-2". Gunter's Space Page. Retrieved 9 October 2017.
- Krebs, Gunter. "Proton-M Blok-DM-03". Gunter's Space Page. Retrieved 10 August 2019.
- Krebs, Gunter. "Proton-K and -M Briz-M". Gunter's Space Page. Retrieved 12 October 2019.
- Krebs, Gunter. "PSLV". Gunter's Space Page. Retrieved 1 December 2019.
- Arunan, S.; Satish, R. (25 September 2015). "Mars Orbiter Mission spacecraft and its challenges". Current Science. 109 (6): 1061–1069. doi:10.18520/v109/i6/1061-1069.
- Berger, Eric (2020-12-03). "Meet Ravn X—a fully autonomous, air-launched rocket for small satellites". Ars Technica. Retrieved 2020-12-04.
- "ABL Space Systems".
- Erwin, Sandra (3 August 2020). "Small launch startup ABL secures over $90 million in new funding and Air Force contracts". SpaceNews. Retrieved 17 August 2020.
- Krebs, Gunter. "Safir". Gunter's Space Pages. Retrieved 2 March 2019.
- "Shavit". Space Launch Report. 13 September 2016. Retrieved 4 September 2018.
LEO Payload 200 x 1,600 km x 143 deg – Shavit: 160 kg – Shavit-1: 225 kg – Shavit-2: 300 kg
- Krebs, Gunter. "Shavit". Gunter's Space Pages. Retrieved 20 December 2016.
- Krebs, Gunter. "Simorgh (Safir-2)". Gunter's Space Page. Retrieved 15 January 2019.
- "Soyuz-2.1 Launch Vehicle". Progress Rocket Space Centre. Retrieved 2 February 2018.
- Krebs, Gunter. "Soyuz-2-1a (14A14)". Gunter's Space Page. Retrieved 10 August 2019.
- Krebs, Gunter. "Soyuz with Fregat upper stage". Gunter's Space Page. Retrieved 26 September 2019.
- Krebs, Gunter. "Soyuz with Ikar and Volga upper stages". Gunter's Space Page. Retrieved 20 December 2016.
- "Soyuz Rocket". Space Launch Report. Retrieved 17 May 2015.
- Krebs, Gunter. "Soyuz-2-1b". Gunter's Space Page. Retrieved 27 September 2019.
- "Soyuz-ST". Encyclopedia Astronautica. Archived from the original on 24 August 2015. Retrieved 17 May 2015.
- "Soyuz-ST Launch Vehicle". Progress Rocket Space Centre. Retrieved 17 May 2015.
- "Soyuz 2 Launch Vehicle". Russian Space Web. Retrieved 19 May 2015.
- "Soyuz overview". Arianespace. Retrieved 7 June 2018.
- Krebs, Gunter. "Soyuz core only". Gunter's Space Page. Retrieved 10 August 2019.
- Zak, Anatoly (7 August 2017). "Preliminary design for Soyuz-5 races to completion". Russian Space Web. Retrieved 2 September 2018.
- Zak, Anatoly (13 November 2017). "Russia's "new" next manned rocket detailed". Russian Space Web. Retrieved 2 September 2018.
- "Russia to launch super-heavy rocket to Moon in 2032–2035". TASS. 23 January 2018. Retrieved 6 June 2018.
- Harbaugh, Jennifer (9 July 2018). "The Great Escape: SLS Provides Power for Missions to the Moon". NASA. Retrieved 4 September 2018.
- Wehner, Mike (18 July 2019). "NASA Quietly Pushes Back Its SLS Launch Estimates to 2021". BGR. Retrieved 19 August 2019.
- "Space Launch System" (PDF). NASA Facts. NASA. 11 October 2017. FS-2017-09-92-MSFC. Retrieved 4 September 2018.
- "America to the Moon 2024" (PDF).
- Creech, Stephen (April 2014). "NASA's Space Launch System: A Capability for Deep Space Exploration" (PDF). NASA. p. 2. Retrieved 4 September 2018.
- Krebs, Gunter. "SS-520". Gunter's Space Page. Retrieved 5 November 2017.
- Graham, William (3 February 2018). "Japanese sounding rocket claims record-breaking orbital launch". NASASpaceFlight. Retrieved 3 February 2018.
- "Experimental Launch of World's Smallest Orbital Space Rocket ends in Failure". Spaceflight 101. 14 January 2017. Retrieved 5 November 2017.
- Krebs, Gunter. "SSLV". Gunter's Space Page. Retrieved 16 August 2018.
- "Starship". SpaceX. Archived from the original on 30 September 2019. Retrieved 1 October 2019.
- "Starship Users Guide" (PDF). spacex.com. Retrieved 1 April 2020.
- "SpaceX CEO Elon Musk says the first orbital flight tests of the company's Starship prototype rocket will be "probably next year."".
- "UNITED STATES COMMERCIAL LAUNCH MANIFEST (7 Jan 2020)".
- "Terran". Relativity Space. Retrieved 5 October 2019.
- Clark, Stephen (3 October 2019). "Relativity scores $140 million funding round for smallsat launcher". Spaceflight Now. Retrieved 5 October 2019.
- "Kwangmyongsong 3, 3-2 (KMS 3, 3-2)".
- Krebs, Gunter. "Unha ("Taepodong-2")". Gunter's Space Page. Retrieved 20 December 2016.
- "Vega overview". Arianespace. Retrieved 7 June 2018.
- "Vega User's Manual" (PDF). Issue 4. Arianespace. April 2014. pp. 2–10. Retrieved 4 September 2018.
- Krebs, Gunter. "Vega". Gunter's Space Page. Retrieved 15 July 2019.
- "Vega C: Launcher". Avio. Retrieved 7 June 2018.
- Henry, Caleb (11 March 2019). "Vega C debut slips to 2020". SpaceNews. Retrieved 10 August 2019.
- "Vega E: M10 motor / Mira". Avio. Retrieved 7 June 2018.
- Henry, Caleb (7 November 2019). "Avio anticipating Vega C upgrade funding at ESA ministerial, Vega return to flight in March". SpaceNews. Retrieved 17 August 2020.
- "Launch Vehicle". Skyroot Aerospace. 2019-01-10. Retrieved 2019-04-21.
- "Skyroot Aerospace". Skyroot Aerospace. Retrieved 2019-04-21.
- Sukumar, C. R.; Krishnan, Raghu (2019-04-17). "With a simpler rocket, Skyroot is eyeing the space". The Economic Times. Retrieved 2019-04-21.
- "Rocket Rundown – A Fleet Overview" (PDF). ULA. November 2019. Retrieved April 14, 2020.
- Foust, Jeff (25 October 2018). "ULA now planning first launch of Vulcan in 2021". SpaceNews. Retrieved 25 October 2018.
- Zak, Anatoly (19 February 2019). "The Yenisei super-heavy rocket". RussianSpaceWeb. Retrieved 20 February 2019.
- Zak, Anatoly (24 November 2017). "Russia charts new roadmap to super-heavy rocket". Russian Space Web. Retrieved 6 June 2018.
- Zak, Anatoly (8 February 2019). "Russia Is Now Working on a Super Heavy Rocket of Its Own". Popular Mechanics. Retrieved 20 February 2019.
- "Roscosmos unveils characteristics of super-heavy rockets for flights to the Moon (In Russian)". RIA NOVOSTI. 24 April 2019.
- Werner, Debra (9 August 2018). "Japan's Interstellar Technologies goes full throttle toward small orbital rocket". SpaceNews. Retrieved 11 August 2018.
- Koizumi, Masumi (15 May 2019). "Japanese rocket pioneer Takafumi Horie says his firm Interstellar Technologies could soon take on SpaceX". The Japan Times. Retrieved 16 September 2019.
- Jones, Andrew (2 August 2018). "Landspace of China to launch first rocket in Q4 2018". SpaceNews. Retrieved 16 August 2018.
- Barbosa, Rui C. (27 October 2018). "Chinese commercial provider LandSpace launches Weilai-1 on a Zhuque-1 rockets – fails to make orbit". NASASpaceFlight.com. Retrieved 27 October 2018.
- Jones, Andrew (10 July 2018). "Commercial Chinese companies set sights on methalox rockets, first orbital launches". SpaceNews. Retrieved 16 August 2018.
- "China's Landspace raises $175 million for Zhuque-2 launch vehicles". SpaceNews. 2020-09-09. Retrieved 2020-09-12.
- Krebs, Gunter. "Ariane-1, -2, -3, -4". Gunter's Space Page. Retrieved 2 August 2011.
- "Ariane 5". andegraf.com. Retrieved April 27, 2018.
- "Final launch of Ariane 5 GS completes busy year / Launchers / Our Activities / ESA". European Space Agency. 2009-12-19. Retrieved 2013-11-04.
- "Welcome To ISRO :: Launch Vehicles". ISRO. Retrieved 2013-11-04.
- Krebs, Gunter. "SLV-3 / ASLV". Gunter's Space Page. Retrieved 18 December 2016.
- "Athena-1 (LLV-1 / LMLV-1)".
- "Athena-1". Astronautix.com. Archived from the original on 2013-10-20. Retrieved 2013-11-04.
- NASA, Athena Mission Planner’s Guide 26 August 2012
- "Athena-2". Astronautix.com. Archived from the original on 2013-11-08. Retrieved 2013-11-04.
- "Athena-2 (LLV-2 / LMLV-2)".
- "Atlas Centaur LV-3C Development".
- "Atlas Centaur".
- Krebs, Gunter. "Atlas Centaur". Gunter's Space Page. Retrieved 1 August 2011.
- astronautix.com, Atlas H
- astronautix.com, Atlas IIIB Archived 2002-05-01 at the Wayback Machine
- Encyclopedia Astronautica, Black Arrow Archived 2007-12-06 at the Wayback Machine
- astronautix.com, Titan III Archived 2014-12-25 at the Wayback Machine
- "WMO OSCAR – Satellite: NOAA-3".
- "NASA – NSSDCA – Spacecraft – Details".
- Krebs, Gunter. "Delta". Gunter's Space Page. Retrieved 16 September 2018.
- Wade, Mark. "Delta 0300". Encyclopedia Astronautica. Archived from the original on 11 October 2011. Retrieved 2 August 2011.
- Wade, Mark. "Delta 0900". Encyclopedia Astronautica. Archived from the original on 11 October 2011. Retrieved 2 August 2011.
- "GEOS 3".
- "1972 – 2616 – Flight Archive".
- "OSO 8".
- "Explorer: RAE B".
- "Delta-1914".
- "NASA – NSSDCA – Spacecraft – Details".
- "Skynet 2A, 2B".
- Wade, Mark. "Delta 2913". Encyclopedia Astronautica. Archived from the original on 11 October 2011. Retrieved 2 August 2011.
- "Explorer: DE 1, 2".
- Wade, Mark. "Delta 4000". Encyclopedia Astronautica. Archived from the original on 11 October 2011. Retrieved 2 August 2011.
- Wade, Mark. "Delta 5000". Encyclopedia Astronautica. Archived from the original on 11 October 2011. Retrieved 2 August 2011.
- "Aura / Signe 3 (D 2B)".
- Space Skyrocket, Diamant, retrieved 19 December 2015
- Krebs, Gunter. "Dnepr". Gunter's Space Page. Retrieved 18 December 2016.
- Clark, Stephen (30 December 2016). "Iridium satellites closed up for launch on Falcon 9 rocket". Spaceflight Now. Retrieved 30 December 2016.
Russian officials have said they plan to discontinue Dnepr launches.
- "S.P.Korolev RSC Energia – LAUNCHERS". Energia.
- Wade, Mark. "Energia". Encyclopedia Astronautica. Archived from the original on 11 October 2011. Retrieved 9 August 2010.
- Krebs, Gunter. "Falcon-1". Gunter's Space Page. Retrieved 18 December 2016.
- "Falcon 9 Overview". SpaceX. 2011. Archived from the original on 2012-01-18. Retrieved 2011-12-01.
- Krebs, Gunter. "Falcon-9". Gunter's Space Page. Retrieved 24 May 2018.
- "Falcon 9". SpaceX. 2012-11-16. Archived from the original on 5 August 2014.
- Feng Bao 1, part of CZ family
- Krebs, Gunter. "FB-1 (Feng Bao-1)". Gunter's Space Page. Retrieved 17 August 2018.
- Krebs, Gunter. "GSLV". Gunter's Space Page. Retrieved 18 December 2016.
- "JERS (Fuyo)".
- astronautix.com, H-2 Archived 2008-07-06 at the Wayback Machine
- Krebs, Gunter. "H-2". Gunter's Space Page. Retrieved 1 August 2011.
- astronautix.com H-IIA 2024 Archived 2011-10-11 at the Wayback Machine
- Krebs, Gunter. "H-2B". Gunter's Space Page. Retrieved 24 September 2019.
- "NISSAN HERITAGE COLLECTION online【その他】プリンス自動車工業小史". Nissan Motors. Retrieved 8 March 2011.
- "JAXA – J-I Launch Vehicle".
- astronautix.com Kaituozhe-1, also called KY-1 Archived 2008-05-12 at the Wayback Machine
- "Cosmos-1, 3, 3M and 3MU – SL-8 – C-1".
- "Kosmos-3M (11K65M)". Archived from the original on 2013-06-02. Retrieved 2015-12-21.
- "Satellite Launch Vehicles". Institute of Space and Astronautical Science (ISAS). Retrieved 4 March 2011.
- astronautix.com, Long March 1, also called CZ-1
- Krebs, Gunter. "CZ-1 (Chang Zheng-1)". Gunter's Space Page. Retrieved 12 February 2014.
- astronautix.com, Long March 1D (CZ-1D) Archived 2002-05-25 at the Wayback Machine
- astronautix.com Long March 2A – CZ-2A Archived 2008-05-16 at the Wayback Machine
- astronautix.com, Encyclopedia Astronautica, Molniya 8K78M Archived 2012-05-08 at the Wayback Machine
- Krebs, Gunter. "Molniya (8K78)". Gunter's Space Page. Retrieved 18 December 2016.
- "US-K (73D6)".
- Krebs, Gunter. "Molniya and Soyuz with upper stages". Gunter's Space Page. Retrieved 18 December 2016.
- "Complex N1-L3". Energia.ru. Retrieved 2013-11-04.
- "L3". Astronautix.com. Archived from the original on 2012-12-01. Retrieved 2013-11-04.
- "RSC "Energia" – History". Energia.ru. 2011-04-12. Retrieved 2013-11-04.
- Wade, Mark. "N1". Encyclopedia Astronautica. Retrieved 9 August 2010.
- astronautix.com, N-I- Delta Archived 2008-07-24 at the Wayback Machine
- astronautix.com, Encyclopedia Astronautica, N-2 Archived 2013-11-08 at the Wayback Machine
- "STSAT 2C".
- LePage, Andrew J. (July 1998). "NOTSNIK: The Navy's Secret Satellite Program". Spaceviews. Archived from the original on May 21, 2003. Retrieved 2009-01-17.
- Korea, By Christoph Bluth,
- Encyclopedia Astronautica, Proton-K
- "Launch Vehicles".
- "Proton". Astronautix.com. Retrieved 2013-11-04.
- "Outcome Budget 2016–2017" (PDF). Government of India, Department of Space. 2016. Retrieved 15 September 2018.
Currently, two versions of PSLV are operational, namely PSLV-XL (with six extended version of Strap-on motors) and the PSLV Core-alone (without Strap-on motors).
- Krebs, Gunter. "Rokot (Rockot)". Gunter's Space Page. Retrieved 31 August 2019.
- astronautix.com, Saturn I Archived 2010-12-07 at the Wayback Machine
- "Saturn-1 & Saturn-1B". Space.skyrocket.de. Retrieved 2013-11-04.
- Encyclopedia Astronautica, Saturn IB Archived 2011-05-14 at the Wayback Machine
- Bilstein, Roger E. "Appendix C: Saturn Family/Mission Data". Stages to Saturn A Technological History of the Apollo/Saturn Launch Vehicles. NASA History Office. Retrieved 7 April 2011.
- Alternatives for Future U.S. Space-Launch Capabilities (PDF), The Congress of the United States. Congressional Budget Office, October 2006, pp. X, 1, 4, 9
- Thomas P. Stafford (1991), America at the Threshold – Report of the Synthesis Group on America's Space Exploration Initiative, p. 31
- "Rocket and Space Technology". Braeunig.us. Retrieved 2013-11-04.
- Alan Lawrie and Robert Godwin, Saturn, 2005 (paperback, Apogee Books Space Series, 2010), ISBN 1-894959-19-1
- John Duncan, Saturn V Flight History Archived 2011-08-05 at the Wayback Machine (1999), web page (accessed 20 August 2010)
- "NASA – Scout Launch Vehicle Program".
- "Vysota / Volna / Shtil".
- "Vysota / Volna / Shtil". Retrieved 2014-12-23.
- "SLV-3". Retrieved 13 February 2014.
- Krebs, Gunter. "Soyuz (11A511)". Gunter's Space Page. Retrieved 20 December 2016.
- "Soyuz-FG Launch Vehicle". Progress Rocket Space Centre. Retrieved 16 May 2015.
- Krebs, Gunter. "Soyuz-FG (11A511U-FG)". Gunter's Space Page. Retrieved 25 September 2019.
- Krebs, Gunter. "Soyuz-L (11A511L)". Gunter's Space Page. Retrieved 20 December 2016.
- Krebs, Gunter. "Soyuz-M (11A511M)". Gunter's Space Page. Retrieved 20 December 2016.
- "Soyuz-U Launch Vehicle". JSC "RCC" Progress. Retrieved 16 May 2015.
- Krebs, Gunter. "Soyuz-U (11A511U)". Gunter's Space Page. Retrieved 20 December 2016.
- Krebs, Gunter. "Soyuz-U2 (11A511U2)". Gunter's Space Page. Retrieved 20 December 2016.
- Krebs, Gunter. "Shuttle (STS)". Gunter's Space Page. Retrieved 14 July 2014.
- "SPACE TRANSPORTATION SYSTEM PAYLOADS". Kennedy Space Center. 2000. Retrieved 14 July 2014.
- "NASA – Space Shuttle". NASA. Retrieved 2012-07-25.
- "Sputnik 2 (PS-2 #1)".
- "EROS B".
- "Start-1".
- "Strela launcher".
- "Strela". Gunter's Space Page. Retrieved 23 Dec 2014.
- astronautix.com, Titan II GLV Archived 2016-02-28 at the Wayback Machine
- astronautix.com, Titan 23G Archived 2016-03-04 at the Wayback Machine
- Encyclopedia Astronautica, Titan 3A Archived 2008-03-07 at the Wayback Machine
- Encyclopedia Astronautica, Titan 3B Archived 2012-10-25 at the Wayback Machine
- astronautix.com, Titan IIIC Archived 2014-12-25 at the Wayback Machine
- astronautix.com, Titan IIID Archived 2016-03-04 at the Wayback Machine
- astronautix.com, Titan IIIE Archived 2015-12-02 at the Wayback Machine
- astronautix.com, Titan 34D Archived 2008-06-30 at the Wayback Machine
- "Titan-4". Gunter's Space Page. Retrieved 14 July 2014.
- "Titan-4". Space.skyrocket.de. Retrieved 2013-11-04.
- "Fact Sheet – TITAN IVB". United States Air Force. Retrieved 2007-11-12.
- astronautix.com, Tsyklon-2A Archived 2013-05-22 at the Wayback Machine
- "Tsiklon-2A (11K67)". Space.skyrocket.de. Retrieved 2013-11-04.
- astronautix.com, Tsyklon-2 Archived 2013-05-22 at the Wayback Machine
- "Tsiklon-2 (11K69)". Space.skyrocket.de. Retrieved 2013-11-04.
- nasaspaceflight.com, Tsyklon-3
- "Tsiklon-3 (11K68)". Space.skyrocket.de. Retrieved 2013-11-04.
- astronautix.com, vanguard Archived 2002-05-06 at the Wayback Machine
- "VLS".
- "IRDT 1, 2, 2R".
- Handbook of Space Engineering, Archaeology, and Heritage by Ann Darrin, Beth L. O'Leary, page 116
- "NASA – NSSDCA – Spacecraft – Details".
- "Spacecraft – Vostok".
- "Meteor-2 (11F632)".
- astronautix.com, Soyuz/Vostok Archived 2010-01-07 at the Wayback Machine
- Ed Kyle. "Zenit Data Sheet". Spacelaunchreport.com. Retrieved 2013-11-04.
- Krebs, Gunter. "Zenit-2". Gunter's Space Pages. Retrieved 20 December 2016.
- "Zenit launch vehicle". Russianspaceweb.com. Retrieved 2013-11-04.
- "Elektro-L 1, 2, 3".
- Krebs, Gunter. "Zenit-3". Gunter's Space Page. Retrieved 28 December 2017.
Wikimedia Commons has media related to Rocket comparisons. |