CYP2C18

Cytochrome P450 2C18 is a protein that in humans is encoded by the CYP2C18 gene.[5][6][7]

CYP2C18
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesCYP2C18, CPCI, CYP2C, CYP2C17, P450-6B/29C, P450IIC17, cytochrome P450 family 2 subfamily C member 18
External IDsOMIM: 601131 MGI: 1919332 HomoloGene: 133567 GeneCards: CYP2C18
Gene location (Human)
Chr.Chromosome 10 (human)[1]
Band10q23.33Start94,683,729 bp[1]
End94,736,190 bp[1]
RNA expression pattern


More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

1562

72082

Ensembl

ENSG00000108242

ENSMUSG00000025002

UniProt

P33260

Q9D816

RefSeq (mRNA)

NM_001128925
NM_000772

NM_028089

RefSeq (protein)

NP_000763
NP_001122397

NP_082365

Location (UCSC)Chr 10: 94.68 – 94.74 MbChr 19: 39.01 – 39.04 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Function

This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic reticulum but its specific substrate has not yet been determined. The gene is located within a cluster of cytochrome P450 genes on chromosome 10q24. An additional gene, CYP2C17, was once thought to exist; however, CYP4217 is now considered an artefact based on a chimera of CYP2C18 and CYP2C19.[7]

CYP2C18 also possesses epoxygenase activity: it can attack various long-chain polyunsaturated fatty acids at their double (i.e. alkene) bonds to form epoxide products that act as signaling agents. It metabolizes: 1) arachidonic acid to various epoxyeicosatrienoic acids (also termed EETs); 2) linoleic acid to 9,10-epoxy octadecaenoic acids (also termed vernolic acid, linoleic acid 9:10-oxide, or leukotoxin) and 12,13-epoxy-octadecaenoic (also termed coronaric acid, linoleic acid 12,13-oxide, or isoleukotoxin); 3) docosahexaenoic acid to various epoxydocosapentaenoic acids (also termed EDPs); and 4) eicosapentaenoic acid to various epoxyeicosatetraenoic acids (also termed EEQs).[8][9][10]

While CYP2C19, CYP2C8, CYP2C9, CYP2J2, and possibly CYP2S1 are the main producers of EETs and, very likely EEQs, EDPs, and the epoxides of linoleic acid, CYP2C18 may contribute to the production of these metabolites in certain tissues.[9][11]

References

  1. GRCh38: Ensembl release 89: ENSG00000108242 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000025002 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Furuya H, Meyer UA, Gelboin HV, Gonzalez FJ (September 1991). "Polymerase chain reaction-directed identification, cloning, and quantification of human CYP2C18 mRNA". Molecular Pharmacology. 40 (3): 375–82. PMID 1896026.
  6. Romkes M, Faletto MB, Blaisdell JA, Raucy JL, Goldstein JA (April 1991). "Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily". Biochemistry. 30 (13): 3247–55. doi:10.1021/bi00227a012. PMID 2009263.
  7. "Entrez Gene: CYP2C18 cytochrome P450, family 2, subfamily C, polypeptide 18".
  8. Fleming I (October 2014). "The pharmacology of the cytochrome P450 epoxygenase/soluble epoxide hydrolase axis in the vasculature and cardiovascular disease". Pharmacological Reviews. 66 (4): 1106–40. doi:10.1124/pr.113.007781. PMID 25244930.
  9. Wagner K, Vito S, Inceoglu B, Hammock BD (October 2014). "The role of long chain fatty acids and their epoxide metabolites in nociceptive signaling". Prostaglandins & Other Lipid Mediators. 113–115: 2–12. doi:10.1016/j.prostaglandins.2014.09.001. PMC 4254344. PMID 25240260.
  10. Fischer R, Konkel A, Mehling H, Blossey K, Gapelyuk A, Wessel N, von Schacky C, Dechend R, Muller DN, Rothe M, Luft FC, Weylandt K, Schunck WH (March 2014). "Dietary omega-3 fatty acids modulate the eicosanoid profile in man primarily via the CYP-epoxygenase pathway". Journal of Lipid Research. 55 (6): 1150–1164. doi:10.1194/jlr.M047357. PMC 4031946. PMID 24634501.
  11. Spector AA, Kim HY (April 2015). "Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism". Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 1851 (4): 356–65. doi:10.1016/j.bbalip.2014.07.020. PMC 4314516. PMID 25093613.

Further reading


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.