Disulfur dioxide
Disulfur dioxide, dimeric sulfur monoxide or SO dimer is an oxide of sulfur with the formula S2O2.[2] The solid is unstable with a lifetime of a few seconds at room temperature.[3]
Names | |
---|---|
Other names
disulfur(II)oxide SO dimer | |
Identifiers | |
3D model (JSmol) |
|
| |
| |
Properties | |
S2O2 | |
Molar mass | 96.1299 g/mol |
Appearance | gas |
Structure | |
bent | |
Hazards | |
Main hazards | toxic |
Related compounds | |
Related compounds |
tetrasulfur SO, S3O S2O |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
Infobox references | |
Structure
Disulfur dioxide adopts a cis planar structure with C2v symmetry. The S−O bond length is 145.8 pm, shorter than in sulfur monoxide. The S−S bond length is 202.45 pm and the O−S−S angle is 112.7°. S2O2 has a dipole moment of 3.17 D.[4] It is an asymmetric top molecule.[1][5]
Formation
Sulfur monoxide (SO) converts to disulfur dioxide (S2O2) spontaneously and reversibly.[4] So the substance can be generated by methods that produce sulfur monoxide. Disulfur dioxide has also been formed by an electric discharge in sulfur dioxide.[5] Another laboratory procedure is to react oxygen atoms with carbonyl sulfide or carbon disulfide vapour.[6]
Although most forms of elemental sulfur (S8 and other rings and chains) do not combine with SO2, atomic sulfur does so to form sulfur monoxide, which dimerizes:[7]
- S + SO2 → S2O2 ⇌ 2 SO
Disulfur dioxide is also produced upon a microwave discharge in sulfur dioxide diluted in helium.[8] At a pressure of 0.1 mmHg (13 Pa), five percent of the result is S2O2.[9]
Disulfur dioxide is formed transiently when hydrogen sulfide and oxygen undergo flash photolysis.[10]
Properties
The ionization energy of disulfur dioxide is 9.93±0.02 eV.[6]
Disulfur dioxide absorbs at 320–400 nm, as observed of the Venusian atmosphere,[11] and is believed to have contributed to the greenhouse effect on that planet.[12]
Reactions
Although disulfur dioxide exists in equilibrium with sulfur monoxide, it also reacts with sulfur monoxide to form sulfur dioxide and disulfur monoxide.[8][13]
Complexes
S2O2 can be a ligand with transition metals. It binds in the η2-S–S position with both sulfur atoms linked to the metal atom.[14] This was first shown in 2003. The bis(trimethylphosphine) thiirane S-oxide complex of platinum, when heated in toluene at 110 °C loses ethylene, and forms a complex with S2O2: (Ph3P)2Pt(S2O2).[15] Iridium atoms can also form a complex: cis-[(dppe)2IrS2]Cl with sodium periodate oxidizes to [(dppe)2IrS2O] and then to [(dppe)2IrS2O2], with dppe being 1,2-bis(diphenylphosphino)ethane.[16][17] This substance has the S2O2 in a cis position. The same conditions can make a trans complex, but this contains two separate SO radicals instead. The iridium complex can be decomposed with triphenylphosphine to form triphenylphosphine oxide and triphenylphosphine sulfide.[16]
Anion
The S
2O−
2 anion has been observed in the gas phase. It may adopt a trigonal shape akin to SO3.[18]
Spectrum
Microwave
Transition | Frequency (MHz)[5] |
---|---|
21,1−20,2 | 11013.840 |
41,3−40,4 | 14081.640 |
11,1−00,0 | 15717.946 |
40,4−31,3 | 16714.167 |
31,3−20,2 | 26342.817 |
42,2−41,3 | 26553.915 |
22,0−21,1 | 28493.046 |
60,6−51,5 | 30629.283 |
52,4−51,5 | 35295.199 |
51,5−40,4 | 35794.527 |
In the Solar System
There is a some evidence that disulfur dioxide may be a small component in the atmosphere of Venus, and that it may substantially contribute of the planet's severe greenhouse effect.[11] It is not found in any substantive quantity in Earth's atmosphere.
References
- Demaison, Jean; Vogt, Jürgen (2011). "836. O2S2 Disulfur dioxide" (PDF). Asymmetric Top Molecules, Part 3. Landolt–Börnstein: Group II Molecules and Radicals. 29D3. Springer. p. 492. doi:10.1007/978-3-642-14145-4_258. ISBN 9783642141454.
- Holleman, Arnold F.; Wiber, Egon; Wiberg, Nils, eds. (2001). "Oxides of sulfur". Inorganic Chemistry. Academic Press. p. 530. ISBN 9780123526519.
- Mitchell, Stephen C. (2004). Biological Interactions Of Sulfur Compounds. CRC Press. p. 7. ISBN 9780203362525.
- Lovas, F. J. (1974). "Spectroscopic studies of the SO2 discharge system. II. Microwave spectrum of the SO dimer". The Journal of Chemical Physics. 60: 5005. doi:10.1063/1.1681015.
- Thorwirth, Sven; Theulé, P.; Gottlieb, C. A.; Müller, H. S. P.; McCarthy, M. C.; Thaddeus, P. (2006). "Rotational spectroscopy of S2O: vibrational satellites, 33S isotopomers, and the submillimeter-wave spectrum" (PDF). Journal of Molecular Structure. 795 (1–3): 219–229. Bibcode:2006JMoSt.795..219T. doi:10.1016/j.molstruc.2006.02.055.
- Cheng, Bing-Ming; Hung, Wen-Ching (1999). "Photoionization efficiency spectrum and ionization energy of S2O2". The Journal of Chemical Physics. 110 (1): 188. Bibcode:1999JChPh.110..188C. doi:10.1063/1.478094. ISSN 0021-9606.
- Murakami, Yoshinori; Onishi, Shouichi; Kobayashi, Takaomi; Fujii, Nobuyuki; Isshiki, Nobuyasu; Tsuchiya, Kentaro; Tezaki, Atsumu; Matsui, Hiroyuki (2003). "High Temperature Reaction of S + SO2 → SO + SO: Implication of S2O2 Intermediate Complex Formation". The Journal of Physical Chemistry A. 107 (50): 10996–11000. Bibcode:2003JPCA..10710996M. doi:10.1021/jp030471i. ISSN 1089-5639.
- Field, T. A.; Slattery, A. E.; Adams, D. J.; Morrison, D. D. (2005). "Experimental observation of dissociative electron attachment to S2O and S2O2 with a new spectrometer for unstable molecules" (PDF). Journal of Physics B: Atomic, Molecular and Optical Physics. 38 (3): 255–264. Bibcode:2005JPhB...38..255F. doi:10.1088/0953-4075/38/3/009. ISSN 0953-4075. Archived from the original (PDF) on 2015-09-24. Retrieved 2013-05-13.
- Sahoo, Balaram; Nayak, Nimai Charan; Samantaray, Asutosh; Pujapanda, Prafulla Kumar (2012). Inorganic Chemistry. PHI Learning. p. 461. ISBN 9788120343085. Retrieved 2013-05-16.
- Compton, R. G.; Bamford, C. H.; Tipper, C. F. H. (1972). "Oxidation of H2S". Reactions of Non-Metallic Inorganic Compounds. Comprehensive Chemical Kinetics. Elsevier. p. 50. ISBN 9780080868011.
- Frandsen, B. N.; Wennberg, P. O.; Kjærgaard, H. G. (2016). "Identification of OSSO as a near-UV absorber in the Venusian atmosphere" (PDF). Geophysical Research Letters. 43 (21): 11146–11155. Bibcode:2016GeoRL..4311146F. doi:10.1002/2016GL070916.
- "Rare molecule on Venus may help explain planet's weather". CBC News. Retrieved 2016-11-11.
- Herron, J. T.; Huie, R. E. (1980). "Rate constants at 298 K for the reactions SO + SO + M → (SO)2 + M and SO + (SO)2 → SO2 + S2O". Chemical Physics Letters. 76 (2): 322–324. Bibcode:1980CPL....76..322H. doi:10.1016/0009-2614(80)87032-1.
- Halcrow, Malcolm A.; Huffman, John C.; Christou, George (1994). "Synthesis, Characterization, and Molecular Structure of the New S2O Complex Mo(S2O)(S2CNEt2)3·1⁄2Et2O" (PDF). Inorganic Chemistry. 33 (17): 3639–3644. doi:10.1021/ic00095a005. ISSN 0020-1669.
- Lorenz, Ingo-Peter; Kull, Jürgen (1986). "Complex Stabilization of Disulfur Dioxide in the Fragmentation of Thiirane S-Oxide on Bis(triphenylphosphane)platinum(0)". Angewandte Chemie International Edition in English. 25 (3): 261–262. doi:10.1002/anie.198602611. ISSN 0570-0833.
- Schmid, Günter; Ritter, Günter; Debaerdemaeker, Tony (1975). "Die Komplexchemie niederer Schwefeloxide. II. Schwefelmonoxid und Dischwefeldioxid als Komplexliganden" [The complex chemistry of lower sulfur oxides. II. Sulfur monoxide and disulfur dioxide as complex ligands]. Chemische Berichte. 108 (9): 3008–3013. doi:10.1002/cber.19751080921. ISSN 0009-2940.
- Nagata, K.; Takeda, N.; Tokitoh, N. (2003). "Unusual Oxidation of Dichalcogenido Complexes of Platinum". Chemistry Letters. 32 (2): 170–171. doi:10.1246/cl.2003.170. ISSN 0366-7022.
- Clements, Todd G.; Hans-Jürgen Deyerl; Robert E. Continetti (2002). "Dissociative Photodetachment Dynamics of S
2O−
2" (PDF). The Journal of Physical Chemistry A. 106 (2): 279–284. Bibcode:2002JPCA..106..279C. doi:10.1021/jp013329v. ISSN 1089-5639. Retrieved 2013-05-13.