Effects of climate change on marine mammals

The effect of climate change on marine life and mammals is a growing concern. Many of the effects of global warming are currently unknown due to unpredictability, but many are becoming increasingly evident today. Some effects are very direct such as loss of habitat, temperature stress, and exposure to severe weather. Other effects are more indirect, such as changes in host pathogen associations, changes in body condition because of predator–prey interaction, changes in exposure to toxins and CO
2
emissions, and increased human interactions.[1] Despite the large potential impacts of ocean warming on marine mammals, the global vulnerability of marine mammals to global warming is still poorly understood.[2]

It has been generally assumed that the Arctic marine mammals were the most vulnerable in the face of climate change given the substantial observed and projected decline in Arctic sea ice cover. However, the implementation of a trait-based approach on assessment of the vulnerability of all marine mammals under future global warming has suggested that the North Pacific Ocean, the Greenland Sea and the Barents Sea host the species that are most vulnerable to global warming.[2] The North Pacific has already been identified as a hotspot for human threats for marine mammals[3] and now is also a hotspot of vulnerability to global warming. This emphasizes that marine mammals in this region will face double jeopardy from both human activities (e.g., marine traffic, pollution and offshore oil and gas development) and global warming, with potential additive or synergetic effect and as a result, these ecosystems face irreversible consequences for marine ecosystem functioning.[2] Consequently the future conservation plans should therefore focus on these regions.

Potential effects

Marine mammals have evolved to live in oceans, but climate change is affecting their natural habitat.[4][5][6][7] Some species may not adapt fast enough, which might lead to their extinction.[8]

Ocean warming

During the last century, the global average land and sea surface temperature has increased due to an increased greenhouse effect from human activities.[9] From 1960 to through 2019, the average temperature for the upper 2000 meters of the oceans has increased by 0.12 degree Celsius, whereas the ocean surface has warmed up to 1.2 degree Celsius from the pre-industrial era.[10]

The illustration of temperature changes from 1960 to 2019 across each ocean starting at the Southern Ocean around Antarctica (Cheng et. al., 2020)

Marine organisms usually tend to encounter relatively stable temperatures compared with terrestrial species and thus are likely to be more sensitive to temperature change than terrestrial organisms.[11] Therefore, the ocean warming will lead to increased species migration, as endangered species look for a more suitable habitat. If sea temperatures continue to rise, then some fauna may move to cooler water and some range-edge species may disappear from regional waters or experienced a reduced global range.[11] Change in the abundance of some species will alter the food resources available to marine mammals, which then results in marine mammals’ biogeographic shifts. Additionally, if a species cannot successfully migrate to a suitable environment, unless it learns to adapt to rising ocean temperatures, it will face extinction.

Sea level rise is also important when assessing the impacts of global warming on marine mammals, since it affects coastal environments that marine mammals species rely.[12]

Primary productivity

Changes in temperatures will impact the location of areas with high primary productivity. Primary producers, such as plankton,[13][14][15][16] are the main food source for marine mammals such as some whales. Species migration will therefore be directly affected by locations of high primary productivity. Water temperature changes also affect ocean turbulence, which has a major impact on the dispersion of plankton and other primary producers.[17] Due to global warming and increased glacier melt, thermohaline circulation patterns may be altered by increasing amounts of freshwater released into oceans and, therefore, changing ocean salinity. Thermohaline circulation is responsible for bringing up cold, nutrient-rich water from the depths of the ocean, a process known as upwelling.[18]

Ocean acidification

Change in pH since the beginning of the industrial revolution. RCP 2.6 scenario is "low CO2 emissions" . RCP 8.5 scenario is "high CO2 emissions", the path we are currently on. Source: J.-P. GATTUSO et al., 2015

About a quarter of the emitted CO2, about 26 million tons is absorbed by the ocean every day.[19] Consequently, the dissolution of anthropogenic carbon dioxide (CO2) in seawater causes a decrease in pH which is corresponding to an increase in acidity of the oceans with consequences for marine biota.  Since the beginning of the industrial revolution, ocean acidity has increased by 30% (the pH decreased from 8.2 to 8.1).[19] It is projected that the ocean will experience severe acidification under RCP 8.5, high CO2 emission scenario, and less intense acidification under RCP 2.6, low CO2 emission scenario. Ocean acidification will impact marine organisms (corals, mussels, oysters) in producing their limestone skeleton or shell. When CO2 dissolves in seawater, it increases protons (H+ ions) but reduces certain molecules, such as carbonate ions in which many oysters needed to produce their limestone skeleton or shell.[19] The shell and the skeleton of these species may become less dense or strong. This also may make coral reefs become more vulnerable to storm damage, and slow down its recovery. In addition, marine organisms may experience changes in growth, development, abundance, and survival in response to ocean acidification

Sea ice changes

Sea ice, a defining characteristic of polar marine environment, is changing rapidly which has impacts on marine mammals. Climate change models predict changes to the sea ice leading to loss of the sea ice habitat, elevations of water and air temperature, and increased occurrence of severe weather. The loss of sea ice habitat will reduced the abundance of seal prey for marine mammals, particularly polar bears. Initially, polar bears may be favored by an increase in leads in the ice that make more suitable seal habitat available but, as the ice thins further, they will have to travel more, using energy to keep in contact with favored habitat.[20] There also may be some indirect effect of sea ice changes on animal heath due to alterations in pathogen transmission, effect on animals on body condition caused by shift in the prey based/food web, changes in toxicant exposure associated with increased human habitation in the Arctic habitat.[21]

Hypoxia

Hypoxia occurs in the variety of coastal environment when the dissolved of oxygen (DO) is depleted to a certain low level, where aquatic organisms, especially benthic fauna, become stressed or die due to the lack of oxygen. [22] Hypoxia occurs when the coastal region enhance Phosphorus release from sediment and increase Nitrate (N) loss. This chemical scenario supports favorable growth for cyanobacteria which contribute to the hypoxia and ultimately sustain eutrophication.[23]  Hypoxia degrades an ecosystem by damaging the bottom fauna habitats, altering the food web, changing the nitrogen and phosphate cycling, decreasing fishery catch, and enhancing the water acidification. [23] There were 500 areas in the world with reported coastal hypoxia in 2011, with Baltic Sea contains the largest hypoxia zone in the world. [24]These numbers are expected to increase due to the worsening condition of coastal areas caused by the excessive anthropogenic nutrient loads that stimulate intensified eutrophication.  The rapidly changing climate in particularly, global warming, also contributes to the increase of Hypoxia occurrence that damaging marine mammals and marine/coastal ecosystem.

Increase frequency of Hypoxia Occurrence in the entire Baltic Sea calculated as the number of profiles with recorded hypoxia relative to the total number of profiles (Conley et. al., 2011)

Species impacted

Polar bears are one of the marine mammals that are most at risk due to climate change. The biggest issue for polar bears related to climate change is the melting of ice as a result of increasing temperatures. When the ice melts, polar bears lose their habitat and food sources. Although polar bears have been known to eat more than 80 species of animals, most of their diet consists of seals, which are also endangered by global warming.[25] There have been an increasing number of polar bear drownings because they become exhausted by having to swim farther to find ice or prey.[26]

Not only are marine mammals impacted by climate change but so is other marine life. An example of this could be coral. When coral is introduced to warming ocean temperatures changes, runoff and pollution, overexposure to sunlight extremely low tides and other stresses, the coral will expel an algae growing on them. They have a symbiotic relationship with the algae. When the coral expels the algae it becomes bleached or "completely white". This is called coral bleaching. The coral then become more vulnerable to disease and death.[27]

Notes

  1. Burek, Kathy A.; Gulland, Frances M. D.; O'Hara, Todd M. (2008). "Effects of Climate Change on Arctic Marine Mammal Health" (PDF). Ecological Applications. 18 (2): S126–S134. doi:10.1890/06-0553.1. ISSN 1051-0761. JSTOR 40062160. PMID 18494366.
  2. Albouy, Camille; Delattre, Valentine; Donati, Giulia; Frölicher, Thomas L.; Albouy-Boyer, Severine; Rufino, Marta; Pellissier, Loïc; Mouillot, David; Leprieur, Fabien (December 2020). "Global vulnerability of marine mammals to global warming". Scientific Reports. 10 (1): 548. doi:10.1038/s41598-019-57280-3. ISSN 2045-2322. PMC 6969058. PMID 31953496.
  3. Avila, Isabel C.; Kaschner, Kristin; Dormann, Carsten F. (May 2018). "Current global risks to marine mammals: Taking stock of the threats". Biological Conservation. 221: 44–58. doi:10.1016/j.biocon.2018.02.021. ISSN 0006-3207.
  4. Harwood, John (1 August 2001). "Marine mammals and their environment in the twenty-first century". Journal of Mammalogy. 82 (3): 630–640. doi:10.1644/1545-1542(2001)082<0630:MMATEI>2.0.CO;2. ISSN 0022-2372.
  5. Simmonds, Mark P.; Isaac, Stephen J. (5 March 2007). "The impacts of climate change on marine mammals: early signs of significant problems". Oryx. 41 (1): 19–26. doi:10.1017/s0030605307001524.
  6. Tynan, Cynthia T.; DeMaster, Douglas P. (1997). "Observations and Predictions of Arctic Climatic Change: Potential Effects on Marine Mammals" (PDF). Arctic. 50 (4): 308–322. doi:10.14430/arctic1113. Animals have a high risk of mortality.
  7. Learmonth, JA; Macleod, CD; Santos, MB; Pierce, GJ; Crick, HQP; Robinson, RA (2006). "Potential effects of climate change on marine mammals". In Gibson, RN; Atkinson, RJA; Gordon, JDM (eds.). Oceanography and marine biology an annual review. Volume 44. Boca Raton: Taylor & Francis. pp. 431–464. ISBN 9781420006391.
  8. Laidre, Kristin L.; Stirling, Ian; Lowry, Lloyd F.; Wiig, Øystein; Heide-Jørgensen, Mads Peter; Ferguson, Steven H. (January 1, 2008). "Quantifying the Sensitivity of Arctic Marine Mammals to Climate-Induced Habitat Change". Ecological Applications. 18 (2): S97–S125. doi:10.1890/06-0546.1. JSTOR 40062159. PMID 18494365.
  9. Map Shows Vast Regions of Ocean Are Warmer March 30, 2013 Scientific American
  10. Cheng, Lijing; Abraham, John; Zhu, Jiang; Trenberth, Kevin E.; Fasullo, John; Boyer, Tim; Locarnini, Ricardo; Zhang, Bin; Yu, Fujiang; Wan, Liying; Chen, Xingrong (February 2020). "Record-Setting Ocean Warmth Continued in 2019". Advances in Atmospheric Sciences. 37 (2): 137–142. doi:10.1007/s00376-020-9283-7. ISSN 0256-1530. S2CID 210157933.
  11. Yao, Cui-Luan; Somero, George N. (February 2014). "The impact of ocean warming on marine organisms". Chinese Science Bulletin. 59 (5–6): 468–479. doi:10.1007/s11434-014-0113-0. ISSN 1001-6538. S2CID 98449170.
  12. Glick, Patrick; Clough, Jonathan; Nunley, Brad. "Sea-Level Rise and Coastal Habitats in the Chesapeake Bay Region" (PDF). National Wildlife Federation. Retrieved November 8, 2014.
  13. Sarmento, H.; Montoya, JM.; Vázquez-Domínguez, E.; Vaqué, D.; Gasol, JM. (2010). "Warming effects on marine microbial food web processes: how far can we go when it comes to predictions?". Philosophical Transactions of the Royal Society B: Biological Sciences. 365 (1549): 2137–2149. doi:10.1098/rstb.2010.0045. PMC 2880134. PMID 20513721.
  14. Vázquez-Domínguez, E.; Vaqué, D.; Gasol, JM. (2007). "Ocean warming enhances respiration and carbon demand of coastal microbial plankton". Global Change Biology. 13 (7): 1327–1334. Bibcode:2007GCBio..13.1327V. doi:10.1111/j.1365-2486.2007.01377.x. hdl:10261/15731.
  15. Vázquez-Domínguez, E.; Vaqué, D.; Gasol, JM. (2012). "Temperature effects on the heterotrophic bacteria, heterotrophic nanoflagellates, and microbial top predators of NW Mediterranean". Aquatic Microbial Ecology. 67 (2): 107–121. doi:10.3354/ame01583.
  16. Mazuecos, E.; Arístegui, J.; Vázquez-Domínguez, E.; Ortega-Retuerta, E.; Gasol, JM.; Reche, I. (2012). "Temperature control of microbial respiration and growth efficiency in the mesopelagic zone of the South Atlantic and Indian Oceans". Deep Sea Research Part I: Oceanographic Research Papers. 95 (2): 131–138. doi:10.3354/ame01583.
  17. Castilla, Juan Carlos. "Marine Ecosystems, Human Impacts on". Encyclopedia of Biodiversity (2 ed.). Academic Press. pp. 56–63.
  18. Haldar, Ishita. Global Warming: The Causes and Consequences. Readworthy. ISBN 9788193534571.
  19. Euzen, Agathe (2017). The ocean revealed. Paris: CNRS ÉDITIONS. ISBN 978-2-271-11907-0.
  20. Derocher, A. E. (2004-04-01). "Polar Bears in a Warming Climate". Integrative and Comparative Biology. 44 (2): 163–176. doi:10.1093/icb/44.2.163. ISSN 1540-7063. PMID 21680496. S2CID 13716867.
  21. Burek, Kathy A.; Gulland, Frances M. D.; O'Hara, Todd M. (March 2008). "Effects of Climate Change on Arctic Marine Mammal Health". Ecological Applications. 18 (sp2): S126–S134. doi:10.1890/06-0553.1. ISSN 1051-0761. PMID 18494366.
  22. Ekau, W.; Auel, H.; Pörtner, H.-O.; Gilbert, D. (2010-05-21). "Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish)". Biogeosciences. 7 (5): 1669–1699. doi:10.5194/bg-7-1669-2010. ISSN 1726-4189.
  23. Conley, Daniel J.; Björck, Svante; Bonsdorff, Erik; Carstensen, Jacob; Destouni, Georgia; Gustafsson, Bo G.; Hietanen, Susanna; Kortekaas, Marloes; Kuosa, Harri; Markus Meier, H. E.; Müller-Karulis, Baerbel (2009-05-15). "Hypoxia-Related Processes in the Baltic Sea". Environmental Science & Technology. 43 (10): 3412–3420. doi:10.1021/es802762a. ISSN 0013-936X. PMID 19544833.
  24. Conley*, Daniel J.; Bonsdorff, Erik; Carstensen, Jacob; Destouni, Georgia; Gustafsson, Bo G.; Hansson, Lars-Anders; Rabalais, Nancy N.; Voss, Maren; Zillén, Lovisa (2009-05-15). "Tackling Hypoxia in the Baltic Sea: Is Engineering a Solution?". Environmental Science & Technology. 43 (10): 3407–3411. doi:10.1021/es8027633. ISSN 0013-936X. PMID 19544832.
  25. Derocher, Andrew. Polar Bears: A Complete Guide to Their Biology and Behavior. Johns Hopkins University Press. p. 84.
  26. Parsons, Edward; Milmoe, B.J.; Rose, Naomi. "Polar Bears". Encyclopedia of Global Warming & Climate Change (2 ed.). SAGE Reference. p. 1114.
  27. US Department of Commerce, National Oceanic and Atmospheric Administration. "What is coral bleaching?". oceanservice.noaa.gov. Retrieved 2019-11-14.

References

  • Poloczanska, E. S., Babcock, R. C., Butler, A., Hobday, A. J., Hoegh-Guldberg, O., Kunz, T. J., Matear, R., Milton, D. A., Okey, T. A., & Richardson, A. J. 2007. "Climate change and Australian marine life". Oceanography and Marine Biology: An Annual Review, 45, 407–478.
  • Marine Climate Change Impacts Partnership. 2006. "Marine Climate Change Impacts Annual Report Card 2006". (Eds. Buckley, P.J., Dye, S.R., & Baxter, J.M..), Summary Report, MCCIP, Lowestoft, 8pp.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.