Spermine

Spermine is a polyamine involved in cellular metabolism that is found in all eukaryotic cells. The precursor for synthesis of spermine is the amino acid ornithine. It is an essential growth factor in some bacteria as well. It is found as a polycation at physiological pH. Spermine is associated with nucleic acids and is thought to stabilize helical structure, particularly in viruses.

Spermine
Identifiers
3D model (JSmol)
3DMet
1750791
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.000.686
EC Number
  • 200-754-2
454653
KEGG
MeSH Spermine
RTECS number
  • EJ7175000
UNII
UN number 3259
Properties
C10H26N4
Molar mass 202.346 g·mol−1
Appearance Colourless crystals
Odor Fishy or like that of semen
Density 937 mg mL−1
Melting point 28 to 30 °C (82 to 86 °F; 301 to 303 K)
Boiling point 150.1 °C; 302.1 °F; 423.2 K at 700 Pa
log P −0.543
Hazards
Main hazards corrosive
GHS pictograms
GHS Signal word Danger
H314
P280, P305+351+338, P310
Flash point 110 °C (230 °F; 383 K)
Related compounds
Related compounds
Spermidine, Putrescine, Cadaverine, Diethylenetriamine, Norspermidine
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references

Crystals of spermine phosphate were first described in 1678, in human semen, by Antonie van Leeuwenhoek.[1] The name spermin was first used by the German chemists Ladenburg and Abel in 1888,[2][3] and the correct structure of spermine was not finally established until 1926, simultaneously in England (by Dudley, Rosenheim, and Starling)[4][5] and Germany (by Wrede et al.).[6] Spermine is the chemical primarily responsible for the characteristic odor of semen.[7]

Derivative

A derivative of spermine, N1, N12-bis(ethyl)spermine (also known as BESm) was investigated in the late 1980s along with similar polyamine analogues for its potential as a cancer therapy.[8][9]

Biosynthesis

Spermine biosynthesis in animals starts with decarboxylation of ornithine by the enzyme Ornithine decarboxylase in the presence of PLP. This decarboxylation gives putrescine. Thereafter the enzyme spermidine synthase effects two N-alkylation by decarboxy-S-Adenosyl methionine. The intermediate is spermidine.

Plants employ additional routes to spermine. In one pathway L-glutamine is the precursor to L-ornithine, after which the synthesis of spermine from L-ornithine follows the same pathway as in animals.

Biosynthesis of spermidine and spermine from putrescine. Ado = 5'-adenosyl.

Another pathway in plants starts with decarboxylation of L-arginine to produce agmatine. The imine functional group in agmatine then is hydrolysed by agmatine deiminase, releasing ammonia, converting the guanidine group into a urea. The resulting N-carbamoylputrescine is acted on by a hydrolase to split off urea group, leaving putrescine. After that the putrescine follows the same pathway to completing the synthesis of spermine.[10]

References

  1. Lewenhoeck, D. A (1677). "Observationes D. Anthonii Lewenhoeck, De Natis E Semine Genitali Animalculis". Philosophical Transactions of the Royal Society of London. 12 (133–142): 1040–1046. doi:10.1098/rstl.1677.0068.
  2. Ladenburg, A; Abel, J (1888). "Ueber das Aethylenimin (Spermin?)". Berichte der Deutschen Chemischen Gesellschaft. 21: 758–766. doi:10.1002/cber.188802101139.
  3. Ladenburg, A; Abel, J (1888). "Nachtrag zu der Mittheilung über das Aethylenimin". Berichte der Deutschen Chemischen Gesellschaft. 21 (2): 2706. doi:10.1002/cber.18880210293.
  4. Dudley, H. W; Rosenheim, O; Starling, W. W (1926). "The Chemical Constitution of Spermine: Structure and Synthesis". Biochemical Journal. 20 (5): 1082–1094. doi:10.1042/bj0201082. PMC 1251823. PMID 16743746.
  5. Dudley, Harold Ward; Rosenheim, Mary Christine; Rosenheim, Otto (1924). "The Chemical Constitution of Spermine. I. The Isolation of Spermine from Animal Tissues, and the Preparation of its Salts". Biochemical Journal. 18 (6): 1263–72. doi:10.1042/bj0181263. PMC 1259516. PMID 16743399.
  6. Wrede, F (2009). "Ueber die aus dem menschlichen Sperma isolierte Base Spermin". Deutsche Medizinische Wochenschrift. 51: 24. doi:10.1055/s-0028-1136345.
  7. Klein, David (2013). Organic Chemistry (2nd ed.).
  8. Porter, Carl W.; McManis, Jim; Casero, Robert A.; Bergeron, Raymond J. (1987). "Relative Abilities of Bis(ethyl) Derivatives of Putrescine, Spermidine, and Spermine to Regulate Polyamine Biosynthesis and Inhibit L1210 Leukemia Cell Growth" (PDF). Cancer Research. 47 (11): 2821–5. PMID 3567905.
  9. Pegg, Anthony E.; Wechter, Rita; Pakala, Rajbabu; Bergeron, Raymond J. (1989). "Effect of N1, N12-Bis(ethyl)spermine and Related Compounds on Growth and Polyamine Acetylation, Content, and Excretion in Human Colon Tumor Cells" (PDF). Journal of Biological Chemistry. 264 (20): 11744–11749.
  10. Dewick, Paul M (2009). Medicinal Natural Products: a biosynthetic approach (3rd ed.). Chichester U.K.: Wiley. p. 312. ISBN 9780470742761.

Further reading

  • Slocum, R. D., Flores, H. E., "Biochemistry and Physiology of Polyamines in Plants", CRC Press, 1991, USA, ISBN 0-8493-6865-0
  • Uriel Bachrach, "The Physiology of Polyamines", CRC Press, 1989, USA, ISBN 0-8493-6808-1
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.