Putrescine

Putrescine is an organic compound with the formula NH2(CH2)4NH2. A colorless liquid, it is related to cadaverine; both are produced by the breakdown of amino acids. The two compounds are largely responsible for the foul odor of putrefying flesh, but also contribute to the odor of such processes as bad breath and bacterial vaginosis.[1] They are also found in semen and some microalgae, together with related molecules like spermine and spermidine. The polyamines, of which putrescine is one of the simplest, appear to be factors necessary for proper eukaryotic cell division.

Putrescine
Names
Preferred IUPAC name
Butane-1,4-diamine
Other names
1,4-Diaminobutane, 1,4-Butanediamine
Identifiers
3D model (JSmol)
3DMet
605282
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.003.440
EC Number
  • 203-782-3
1715
KEGG
MeSH Putrescine
RTECS number
  • EJ6800000
UNII
UN number 2928
Properties
C4H12N2
Molar mass 88.154 g·mol−1
Appearance Colourless crystals
Odor fishy-ammoniacal, pungent
Density 0.877 g/mL
Melting point 27.5 °C (81.5 °F; 300.6 K)
Boiling point 158.6 °C; 317.4 °F; 431.7 K
Miscible
log P −0.466
Vapor pressure 2.33 mm Hg at 25 deg C (est)
3.54x10−10 atm-cu m/mol at 25 deg C (est)
1.457
Hazards
GHS pictograms
GHS Signal word Danger
H228, H302, H312, H314, H331
P210, P261, P280, P305+351+338, P310
Flash point 51 °C (124 °F; 324 K)
Explosive limits 0.98–9.08%
Lethal dose or concentration (LD, LC):
  • 463 mg kg−1 (oral, rat)
  • 1.576 g kg−1 (dermal, rabbit)
Related compounds
Related alkanamines
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references

Production

Putrescine and cadaverine were first described in 1885 by the Berlin physician Ludwig Brieger (1849–1919).[2][3][4]

Putrescine is produced on an industrial scale by hydrogenation of succinonitrile.[5] It react with adipic acid to yield the polyamide Nylon 46, which is marketed by DSM under the trade name Stanyl.[6]

Biotechnological production of putrescine from renewable feedstock has been investigated. A metabolically engineered strain of Escherichia coli that produces putrescine at high titer in glucose mineral salts medium has been described.[7]

Biochemistry

Biosynthesis of spermidine and spermine from putrescine. Ado = 5'-adenosyl.

Spermidine synthase uses putrescine and S-adenosylmethioninamine (decarboxylated S-adenosyl methionine) to produce spermidine. Spermidine in turn is combined with another S-adenosylmethioninamine and gets converted to spermine.

Putrescine is synthesized in small quantities by healthy living cells by the action of ornithine decarboxylase.

Putrescine is synthesized biologically via two different pathways, both starting from arginine.

Toxicity

In rats it has a low acute oral toxicity of 2000 mg/kg body weight, with no-observed-adverse-effect level of 2000 ppm (180 mg/kg body weight/day).[9]

In humans, molecular modelling and docking experiments have shown that putrescine fits into the binding pocket of the human TAAR6 and TAAR8 receptors.[10]

Further reading

  • Haglund, William (1996). Forensic taphonomy: The Postmortem Fate of Human Remains. CRC Press. pp. 100. ISBN 0-8493-9434-1.

See also

References

  1. Yeoman, CJ;Thomas, SM; Miller, ME; Ulanov, AV; Torralba, M; Lucas, S; Gillis, M; Cregger, M; Gomez, A; Ho, M; Leigh, SR; Stumpf, R; Creedon, DJ; Smith, MA; Weisbaum, JS; Nelson, KE; Wilson, BA; White, BA (2013). "A multi-omic systems-based approach reveals metabolic markers of bacterial vaginosis and insight into the disease". PLOS One. 8 (2): e56111. Bibcode:2013PLoSO...856111Y. doi:10.1371/journal.pone.0056111. PMC 3566083. PMID 23405259.CS1 maint: uses authors parameter (link)
  2. Brief biography of Ludwig Brieger (in German). Biography of Ludwig Brieger in English.
  3. Ludwig Brieger, "Weitere Untersuchungen über Ptomaine" [Further investigations into ptomaines] (Berlin, Germany: August Hirschwald, 1885), page 43. From page 43: Ich nenne dasselbe Putrescin, von putresco, faul werden, vermodern, verwesen. (I call this [compound] "putrescine", from [the Latin word] putresco, to become rotten, decay, rot.)
  4. Ludwig Brieger, "Weitere Untersuchungen über Ptomaine" [Further investigations into ptomaines] (Berlin, Germany: August Hirschwald, 1885), page 39.
  5. "Nitriles". Ullmann's Encyclopedia of Industrial Chemistry (7th ed.). Retrieved 2007-09-10.
  6. "Electronic Control Modules (ECU) - Electrical & Electronics - Applications - DSM". Dsm.com. Retrieved 18 December 2015.
  7. Qian, Zhi-Gang; Xia, Xiao-Xia; Yup Lee, Sang (2009). "Metabolic Engineering of Escherichia coli for the Production of Putrescine: A Four Carbon Diamine". Biotechnology and Bioengineering. doi:10.1002/bit.22502. Archived from the original on 2013-01-05. Retrieved 2010-06-10.
  8. Srivenugopal KS, Adiga PR (September 1981). "Enzymic conversion of agmatine to putrescine in Lathyrus sativus seedlings. Purification and properties of a multifunctional enzyme (putrescine synthase)". J. Biol. Chem. 256 (18): 9532–41. PMID 6895223.
  9. Til, H.P.; Falke, H.E.; Prinsen, M.K.; Willems, M.I. (1997). "Acute and subacute toxicity of tyramine, spermidine, spermine, putrescine and cadaverine in rats". Food and Chemical Toxicology. 35 (3–4): 337–348. doi:10.1016/S0278-6915(97)00121-X. ISSN 0278-6915. PMID 9207896.
  10. Izquierdo, C; Gomez-Tamayo, JC; Nebel, J-C; Pardo, L; Gonzalez, A (2018). "Identifying human diamine sensors for death related putrescine and cadaverine molecules". PLOS Computational Biology. 14 (1): e1005945. Bibcode:2018PLSCB..14E5945I. doi:10.1371/journal.pcbi.1005945. PMC 5783396. PMID 29324768.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.