Soatá Formation

The Soatá Formation (Spanish: Formación Soatá) is a geological formation of the northern Altiplano Cundiboyacense, Eastern Ranges of the Colombian Andes. The formation consists mainly of shales with conglomerates and dates to the Quaternary period; Late Pleistocene epoch. The heavily eroded formation has a maximum measured thickness of 30.8 metres (101 ft). It contains the lacustrine and fluvio-glacial sediments of elongated paleolake Soatá, that existed on the Altiplano in the valley of the Chicamocha River.

Soatá Formation
Stratigraphic range: Late Pleistocene
~0.0475–0.0388 Ma
TypeGeological formation
UnderliesHolocene sediments of the Chicamocha River
OverliesCapacho Formation
Area~130 km2 (50 sq mi)
Thicknessup to 30.8 m (101 ft)
Lithology
PrimaryShale
OtherConglomerate, siltstone
Location
Coordinates6°18′00″N 72°39′46″W
RegionAltiplano Cundiboyacense
Eastern Ranges, Andes
Country Colombia
Extent~30 km × 7 km (18.6 mi × 4.3 mi)
Type section
Named forSoatá
Named byVillarroel et al.
LocationPortugalete, Soatá
Year defined2001
Coordinates6°18′00″N 72°39′46″W
Approximate paleocoordinates6.3°N 72.5°W / 6.3; -72.5
RegionBoyacá
Country Colombia
Thickness at type section30.8 m (101 ft)

Paleogeography of the Pleistocene
The Chicamocha River, seen here farther downstream at the Chicamocha Canyon, heavily eroded the former Pleistocene terraces of the Soatá Formation

Fossils of the gomphothere Haplomastodon waringi, the capibara Neochoerus sp. and the deer species Odocoileus cf. salinae have been found in the Soatá Formation.

Knowledge about the formation has been provided by Colombian geologists Carlos Villarroel, Jorge Brieva and others.

Etymology

The formation was first proposed and named after Soatá by Villarroel et al. in 2001. The type locality is defined near Portugalete, Soatá.[1]

Regional setting

The Soatá Formation was deposited in a glacial lacustrine environment, in a narrow elongated deep paleolake

The Altiplano Cundiboyacense, in the Eastern Ranges of the Colombian Andes, was formed late in the regional uplift of the Andean orogeny. It is estimated that the main stage of uplift happened during the Plio-Pleistocene. The Western and Central Ranges were submerged much earlier, leaving a corridor to the Caribbean in the Neogene.

The compression in the Andean orogenic belt caused the formation of fold and thrust belts in the Eastern Ranges, where Cretaceous and Jurassic normal faults were inverted as thrust faults lifting up the Paleozoic (Floresta and Cuche Formations), Mesozoic and Paleogene strata. A hiatus existed on the Altiplano between the Late Eocene and Late Miocene, in several parts of the Altiplano continuing until the Pleistocene.

During the glacials and interglacials of the Pleistocene ("ice ages"), several paleolakes formed on the Altiplano Cundiboyacense, of which Lake Humboldt on the Bogotá savanna was the most extensive (approximately 4,500 square kilometres (1,700 sq mi)). Rivers were restricted during the drier glacial periods and the vegetation changed from páramo to Andean forest between the glacials and stadials and interglacials and interstadials.[2]

Description

Fossils of the gomphothere Haplomastodon waringi were found in the Soatá Formation

Lithologies

The Soatá Formation consists of whitish calcareous claystones and sandy siltstones with plagioclase, hematite, zircon, green and reddish biotite, hornblende and crystalline calcite in its upper, older terrace. This unit also contains foraminifera and fragments of shells.[1]

The middle, younger unit is composed of basal greyish claystones with non-uniform matrix-supported conglomerates at the upper section. The uppermost layer contains siltstones, probably of volcaniclastic origin.[3]

The youngest sediments are found deepest in the basin and consist of claystones and greenish matrix-supported conglomerates. Rootlets and mammal fossils are more abundant in this layer.[3]

Stratigraphy

The Soatá Formation unconformably overlies the Cretaceous Capacho Formation, and is overlain by the Holocene infill sediments of the Chicamocha River, the course of which severely eroded and fragmented the Soatá formation.[4] The formation is subdivided into three units of different lithological character and sedimentary dip in a terrace setting. The Soatá Formation is time-equivalent with the upper part of the Sabana Formation on the Bogotá savanna and the Chinauta deposits near Fusagasugá in the southwest of the Altiplano.[5][6] Two samples were analysed for radiometric dating and provided ages of 45,900 ± 1,600 and 39,600 ± 800 years BP.[7] This corresponds to the Chicagota interstadial and the Tagua stadial, when the glaciations were at their maximum extent.[8][9]

Depositional environment

The depositional environment has been interpreted as lacustrine (Lake Soatá) and fluvio-deltaic. Contrasting with the wide and shallow Lake Humboldt on the Bogotá savanna, Lake Soatá was probably close to 400 metres (1,300 ft) deep.[10] The paleolake was approximately 30 kilometres (19 mi) long and widest between Soatá and Boavita at 7 kilometres (4.3 mi).[11]

Fossil content

In the Soatá Formation, fossils of Haplomastodon waringi, Neochoerus sp. and Odocoileus cf. salinae have been found.[12] The fossil content is fragmentary.[13]

Outcrops

Type locality of the Soatá Formation to the northeast of the Altiplano Cundiboyacense. The Chicamocha River valley is clearly visible.

The Soatá Formation is apart from its type locality Portugalete found around Soatá (Jútua), and stretches to the north near the border of Boyacá and Santander, northeast of Tipacoque. To the south, the formation may have reached until Socotá.[10]

Regional correlations

Stratigraphy of the Llanos Basin and surrounding provinces
MaAgePaleomapRegional eventsCatatumboCordilleraproximal Llanosdistal LlanosPutumayoVSMEnvironmentsMaximum thicknessPetroleum geologyNotes
0.01Holocene
Holocene volcanism
Seismic activity
alluviumOverburden
1Pleistocene
Pleistocene volcanism
Andean orogeny 3
Glaciations
GuayaboSoatá
Sabana
NecesidadGuayaboGigante
Neiva
Alluvial to fluvial (Guayabo)550 m (1,800 ft)
(Guayabo)
[14][15][16][17]
2.6Pliocene
Pliocene volcanism
Andean orogeny 3
GABI
Subachoque
5.3MessinianAndean orogeny 3
Foreland
MarichuelaCaimánHonda[16][18]
13.5LanghianRegional floodingLeónhiatusCajaLeónLacustrine (León)400 m (1,300 ft)
(León)
Seal[17][19]
16.2BurdigalianMiocene inundations
Andean orogeny 2
C1Carbonera C1OspinaProximal fluvio-deltaic (C1)850 m (2,790 ft)
(Carbonera)
Reservoir[18][17]
17.3C2Carbonera C2Distal lacustrine-deltaic (C2)Seal
19C3Carbonera C3Proximal fluvio-deltaic (C3)Reservoir
21Early MiocenePebas wetlandsC4Carbonera C4BarzalosaDistal fluvio-deltaic (C4)Seal
23Late Oligocene
Andean orogeny 1
Foredeep
C5Carbonera C5OritoProximal fluvio-deltaic (C5)Reservoir[15][18]
25C6Carbonera C6Distal fluvio-lacustrine (C6)Seal
28Early OligoceneC7C7PepinoGualandayProximal deltaic-marine (C7)Reservoir[15][18][20]
32Oligo-EoceneC8UsmeC8onlapMarine-deltaic (C8)Seal
Source
[20]
35Late Eocene
MiradorMiradorCoastal (Mirador)240 m (790 ft)
(Mirador)
Reservoir[17][21]
40Middle EoceneRegaderahiatus
45
50Early Eocene
SochaLos CuervosDeltaic (Los Cuervos)260 m (850 ft)
(Los Cuervos)
Seal
Source
[17][21]
55Late PaleocenePETM
2000 ppm CO2
Los CuervosBogotáGualanday
60Early PaleoceneSALMABarcoGuaduasBarcoRumiyacoFluvial (Barco)225 m (738 ft)
(Barco)
Reservoir[14][15][18][17][22]
65Maastrichtian
KT extinctionCatatumboGuadalupeMonserrateDeltaic-fluvial (Guadalupe)750 m (2,460 ft)
(Guadalupe)
Reservoir[14][17]
72CampanianEnd of riftingColón-Mito Juan[17][23]
83SantonianVilleta/Güagüaquí
86Coniacian
89TuronianCenomanian-Turonian anoxic eventLa LunaChipaqueGachetáhiatusRestricted marine (all)500 m (1,600 ft)
(Gachetá)
Source[14][17][24]
93Cenomanian
Rift 2
100AlbianUneUneCaballosDeltaic (Une)500 m (1,600 ft)
(Une)
Reservoir[18][24]
113Aptian
CapachoFómequeMotemaYavíOpen marine (Fómeque)800 m (2,600 ft)
(Fómeque)
Source (Fóm)[15][17][25]
125BarremianHigh biodiversityAguardientePajaShallow to open marine (Paja)940 m (3,080 ft)
(Paja)
Reservoir[14]
129Hauterivian
Rift 1Tibú-
Mercedes
Las JuntashiatusDeltaic (Las Juntas)910 m (2,990 ft)
(Las Juntas)
Reservoir (LJun)[14]
133ValanginianRío NegroCáqueza
Macanal
Rosablanca
Restricted marine (Macanal)2,935 m (9,629 ft)
(Macanal)
Source (Mac)[15][26]
140BerriasianGirón
145TithonianBreak-up of PangeaJordánArcabucoBuenavista
Batá
SaldañaAlluvial, fluvial (Buenavista)110 m (360 ft)
(Buenavista)
"Jurassic"[18][27]
150Early-Mid Jurassic
Passive margin 2La Quinta
Montebel

Noreán
hiatusCoastal tuff (La Quinta)100 m (330 ft)
(La Quinta)
[28]
201Late Triassic
MucuchachiPayandé[18]
235Early Triassic
Pangeahiatus"Paleozoic"
250Permian
300Late Carboniferous
Famatinian orogenyCerro Neiva
()
[29]
340Early CarboniferousFossil fish
Romer's gap
Cuche
(355-385)
Farallones
()
Deltaic, estuarine (Cuche)900 m (3,000 ft)
(Cuche)
360Late Devonian
Passive margin 1Río Cachirí
(360-419)
Ambicá
()
Alluvial-fluvial-reef (Farallones)2,400 m (7,900 ft)
(Farallones)
[26][30][31][32][33]
390Early Devonian
High biodiversityFloresta
(387-400)
El Tíbet
Shallow marine (Floresta)600 m (2,000 ft)
(Floresta)
410Late SilurianSilurian mystery
425Early Silurianhiatus
440Late Ordovician
Rich fauna in BoliviaSan Pedro
(450-490)
Duda
()
470Early OrdovicianFirst fossilsBusbanzá
(>470±22)
Chuscales
Otengá
Guape
()
Río Nevado
()
Hígado
()
Agua Blanca
Venado
(470-475)
[34][35][36]
488Late Cambrian
Regional intrusionsChicamocha
(490-515)
Quetame
()
Ariarí
()
SJ del Guaviare
(490-590)
San Isidro
()
[37][38]
515Early CambrianCambrian explosion[36][39]
542Ediacaran
Break-up of Rodiniapre-Quetamepost-ParguazaEl Barro
()
Yellow: allochthonous basement
(Chibcha Terrane)
Green: autochthonous basement
(Río Negro-Juruena Province)
Basement[40][41]
600Neoproterozoic
Cariri Velhos orogenyBucaramanga
(600-1400)
pre-Guaviare[37]
800
Snowball Earth[42]
1000Mesoproterozoic
Sunsás orogenyAriarí
(1000)
La Urraca
(1030-1100)
[43][44][45][46]
1300Rondônia-Juruá orogenypre-AriaríParguaza
(1300-1400)
Garzón
(1180-1550)
[47]
1400
pre-Bucaramanga[48]
1600PaleoproterozoicMaimachi
(1500-1700)
pre-Garzón[49]
1800
Tapajós orogenyMitú
(1800)
[47][49]
1950Transamazonic orogenypre-Mitú[47]
2200Columbia
2530Archean
Carajas-Imataca orogeny[47]
3100Kenorland
Sources
Legend
  • group
  • important formation
  • fossiliferous formation
  • minor formation
  • (age in Ma)
  • proximal Llanos (Medina)[note 1]
  • distal Llanos (Saltarin 1A well)[note 2]

See also

Notes

  1. based on Duarte et al. (2019)[50], García González et al. (2009),[51] and geological report of Villavicencio[52]
  2. based on Duarte et al. (2019)[50] and the hydrocarbon potential evaluation performed by the UIS and ANH in 2009[53]

References

  1. Villarroel et al., 2001, p.80
  2. Urrego et al., 2016, p.702
  3. Villarroel et al., 2001, p.82
  4. IGAC, 2005, p.150
  5. Villarroel et al., 2001, p.84
  6. Hoyos et al., 2015, p.263
  7. Villarroel et al., 2001, p.90
  8. Hammen, 1986, p.27
  9. Rutter et al., 2012, p.32
  10. Villarroel et al., 2001, p.88
  11. Villarroel et al., 2001, p.81
  12. Soatá at Fossilworks.org
  13. Villarroel et al., 1996, p.85
  14. García González et al., 2009, p.27
  15. García González et al., 2009, p.50
  16. García González et al., 2009, p.85
  17. Barrero et al., 2007, p.60
  18. Barrero et al., 2007, p.58
  19. Plancha 111, 2001, p.29
  20. Plancha 177, 2015, p.39
  21. Plancha 111, 2001, p.26
  22. Plancha 111, 2001, p.24
  23. Plancha 111, 2001, p.23
  24. Pulido & Gómez, 2001, p.32
  25. Pulido & Gómez, 2001, p.30
  26. Pulido & Gómez, 2001, pp.21-26
  27. Pulido & Gómez, 2001, p.28
  28. Correa Martínez et al., 2019, p.49
  29. Plancha 303, 2002, p.27
  30. Terraza et al., 2008, p.22
  31. Plancha 229, 2015, pp.46-55
  32. Plancha 303, 2002, p.26
  33. Moreno Sánchez et al., 2009, p.53
  34. Mantilla Figueroa et al., 2015, p.43
  35. Manosalva Sánchez et al., 2017, p.84
  36. Plancha 303, 2002, p.24
  37. Mantilla Figueroa et al., 2015, p.42
  38. Arango Mejía et al., 2012, p.25
  39. Plancha 350, 2011, p.49
  40. Pulido & Gómez, 2001, pp.17-21
  41. Plancha 111, 2001, p.13
  42. Plancha 303, 2002, p.23
  43. Plancha 348, 2015, p.38
  44. Planchas 367-414, 2003, p.35
  45. Toro Toro et al., 2014, p.22
  46. Plancha 303, 2002, p.21
  47. Bonilla et al., 2016, p.19
  48. Gómez Tapias et al., 2015, p.209
  49. Bonilla et al., 2016, p.22
  50. Duarte et al., 2019
  51. García González et al., 2009
  52. Pulido & Gómez, 2001
  53. García González et al., 2009, p.60

Bibliography

  • Van der Hammen, Thomas. 1986. Cambios medioambientales y la extinción del mastodonte en el norte de los Andes. Revista de Antropología, Universidad de los Andes II. 27-34.
  • Hoyos, Natalia; O. Monsalve; G.W. Berger; J.L. Antinao; H. Giraldo; C. Silva; G. Ojeda; G. Bayona, and J. Escobar and C. Montes. 2015. A climatic trigger for catastrophic Pleistocene–Holocene debris flows in the Eastern Andean Cordillera of Colombia. Journal of Quaternary Science 30. 258-270.
  • Rutter, N.; A. Coronato; K. Helmens; J. Rabassa, and M. Zárate. 2012. Glaciations in North and South America from the Miocene to the Last Glacial Maximum, 1–67. Springer.
  • Urrego, Dunia H.; Henry Hooghiemstra; Oscar Rama Corredor; Belén Martrat; Joan O. Grimalt; Lonnie Thompson; Mark B. Bush; Zaire González Carranza, and Jennifer Hanselman, Bryan Valencia and César Velásquez Ruiz. 2016. Millennial-scale vegetation changes in the tropical Andes using ecological grouping and ordination methods. Climate of the Past 12. 697-711.
  • Villarroel, Carlos; Ana Elena Concha, and Carlos Macía. 2001. El Lago Pleistoceno de Soatá (Boyacá, Colombia): Consideraciones estratigráficas, paleontológicas y paleoecológicas. Geología Colombiana 26. 79-93.
  • Villarroel, Carlos; Jorge Brieva B., and Alberto Cadena. 1996. La Fauna de Mamíferos Fósiles del Pleistoceno de Jútua, Municipio de Soatá (Boyacá, Colombia). Geología Colombiana 21. 81-87.
  • Various, Authors. 2005. Estudio General de Suelos y Zonificación de Tierras del Departamento de Boyacá, 1-256. IGAC.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.