MAPKAPK2

MAP kinase-activated protein kinase 2 is an enzyme that in humans is encoded by the MAPKAPK2 gene.[5][6]

MAPKAPK2
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesMAPKAPK2, MAPKAP-K2, MK-2, MK2, mitogen-activated protein kinase-activated protein kinase 2, MAPK activated protein kinase 2
External IDsOMIM: 602006 MGI: 109298 HomoloGene: 56412 GeneCards: MAPKAPK2
Gene location (Human)
Chr.Chromosome 1 (human)[1]
Band1q32.1Start206,684,944 bp[1]
End206,734,283 bp[1]
RNA expression pattern




More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

9261

17164

Ensembl

ENSG00000162889

ENSMUSG00000016528

UniProt

P49137

P49138

RefSeq (mRNA)

NM_004759
NM_032960

NM_008551

RefSeq (protein)

NP_004750
NP_116584

NP_032577

Location (UCSC)Chr 1: 206.68 – 206.73 MbChr 1: 131.05 – 131.1 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Function

This gene encodes a member of the Ser/Thr protein kinase family. This kinase is regulated through direct phosphorylation by p38 MAP kinase. In conjunction with p38 MAP kinase, this kinase is known to be involved in many cellular processes including stress and inflammatory responses, nuclear export, gene expression regulation and cell proliferation. Heat shock protein HSP27 was shown to be one of the substrates of this kinase in vivo. Two transcript variants encoding two different isoforms have been found for this gene.[7]

SASP initiation

MAPKAPK2 mediates the initiation of the senescence-associated secretory phenotype (SASP) by mTOR (mechanistic target of rapamycin).[8][9] Interleukin 1 alpha (IL1A) is found on the surface of senescent cells, where it contributes to the production of SASP factors due to a positive feedback loop with NF-κB.[10][11] Translation of mRNA for IL1A is highly dependent upon mTOR activity.[12] mTOR activity increases levels of IL1A, mediated by MAPKAPK2.[10]

See also

  • SB 203580, suppresses the activation of MAPKAPK2

Interactions

MAPKAPK2 has been shown to interact with:

References

  1. GRCh38: Ensembl release 89: ENSG00000162889 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000016528 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Zu YL, Wu F, Gilchrist A, Ai Y, Labadia ME, Huang CK (Jun 1994). "The primary structure of a human MAP kinase activated protein kinase 2". Biochem Biophys Res Commun. 200 (2): 1118–24. doi:10.1006/bbrc.1994.1566. PMID 8179591.
  6. Stokoe D, Caudwell B, Cohen PT, Cohen P (Feb 1994). "The substrate specificity and structure of mitogen-activated protein (MAP) kinase-activated protein kinase-2". Biochem J. 296 (Pt 3): 843–9. doi:10.1042/bj2960843. PMC 1137771. PMID 8280084.
  7. "Entrez Gene: MAPKAPK2 mitogen-activated protein kinase-activated protein kinase 2".
  8. Yessenkyzy A, Saliev T, Zhanaliyeva M, Nurgozhin T (2020). "Polyphenols as Caloric-Restriction Mimetics and Autophagy Inducers in Aging Research". Nutrients. 12 (5): 1344. doi:10.3390/nu12051344. PMC 7285205. PMID 32397145.
  9. Papadopoli D, Boulay K, Kazak L, Hulea L (2019). "mTOR as a central regulator of lifespan and aging". F1000Research. 8: 998. doi:10.12688/f1000research.17196.1. PMC 6611156. PMID 31316753.
  10. Laberge R, Sun Y, Orjalo AV, Patil CK, Campisi J (2015). "MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation". Nature Cell Biology. 17 (8): 1049–1061. doi:10.1038/ncb3195. PMC 4691706. PMID 26147250.
  11. Wang R, Yu Z, Sunchu B, Perez VI (2017). "Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2-independent mechanism". Aging Cell. 16 (3): 564–574. doi:10.1111/acel.12587. PMC 5418203. PMID 28371119.
  12. Wang R, Sunchu B, Perez VI (2017). "Rapamycin and the inhibition of the secretory phenotype". Experimental Gerontology. 94: 89–92. doi:10.1016/j.exger.2017.01.026. PMID 28167236. S2CID 4960885.
  13. Rane MJ, Coxon PY, Powell DW, Webster R, Klein JB, Pierce W, Ping P, McLeish KR (Feb 2001). "p38 Kinase-dependent MAPKAPK-2 activation functions as 3-phosphoinositide-dependent kinase-2 for Akt in human neutrophils". J. Biol. Chem. 276 (5): 3517–23. doi:10.1074/jbc.M005953200. PMID 11042204.
  14. Janknecht R (Nov 2001). "Cell type-specific inhibition of the ETS transcription factor ER81 by mitogen-activated protein kinase-activated protein kinase 2". J. Biol. Chem. 276 (45): 41856–61. doi:10.1074/jbc.M106630200. PMID 11551945.
  15. Yannoni YM, Gaestel M, Lin LL (Apr 2004). "P66(ShcA) interacts with MAPKAP kinase 2 and regulates its activity". FEBS Lett. 564 (1–2): 205–11. doi:10.1016/S0014-5793(04)00351-5. PMID 15094067.
  16. Dondelinger Y, Delanghe T, Rojas-Rivera D, Priem D, Delvaeye T, Bruggeman I, Van Herreweghe F, Vandenabeele P, Bertrand MJ (October 2017). "MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death". Nature Cell Biology. 19 (10): 1237–1247. doi:10.1038/ncb3608. PMID 28920952. S2CID 25779284.

Further reading


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.