PKN3 (gene)

PKN3 is a protein kinase C-related molecule and thought to be an effector mediating malignant cell growth downstream of activated phosphoinositide 3-kinase (PI3K).[5] It is thought that chronic activation of the phosphoinositide 3-kinase (PI3K)/PTEN signal transduction pathway contributes to metastatic cell growth and that PKN3 may mediate that growth.1

PKN3
Identifiers
AliasesPKN3, UTDP4-1, protein kinase N3
External IDsOMIM: 610714 MGI: 2388285 HomoloGene: 50980 GeneCards: PKN3
Gene location (Human)
Chr.Chromosome 9 (human)[1]
Band9q34.11Start128,702,503 bp[1]
End128,720,916 bp[1]
RNA expression pattern


More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

29941

263803

Ensembl

ENSG00000160447

ENSMUSG00000026785

UniProt

Q6P5Z2

Q8K045

RefSeq (mRNA)

NM_013355
NM_001317926

NM_153805

RefSeq (protein)

NP_001304855
NP_037487

NP_722500

Location (UCSC)Chr 9: 128.7 – 128.72 MbChr 2: 30.08 – 30.09 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

PKN3 is required for invasive prostate cell growth as assessed by 3D cell culture assays and in an orthotopic mouse tumor model by inducible expression of short hairpin RNA (shRNA). PKN3 may represent a target for therapeutic intervention in cancers that lack tumor suppressor PTEN function or depend on chronic activation of PI3K.

Interactions

PKN3 (gene) has been shown to interact with ARHGAP26.[6]

References

  1. GRCh38: Ensembl release 89: ENSG00000160447 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000026785 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: PKN3 protein kinase N3".
  6. Shibata H, Oishi K, Yamagiwa A, Matsumoto M, Mukai H, Ono Y (July 2001). "PKNbeta interacts with the SH3 domains of Graf and a novel Graf related protein, Graf2, which are GTPase activating proteins for Rho family". Journal of Biochemistry. 130 (1): 23–31. doi:10.1093/oxfordjournals.jbchem.a002958. PMID 11432776.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.