Brain-specific angiogenesis inhibitor 3
Brain-specific angiogenesis inhibitor 3 is a protein that in humans is encoded by the BAI3 gene.[5][6]
BAI1, a p53-target gene, encodes brain-specific angiogenesis inhibitor, a seven-span transmembrane protein and is thought to be a member of the secretin receptor family. Brain-specific angiogenesis proteins BAI2 and BAI3 are similar to BAI1 in structure, have similar tissue specificities and may also play a role in angiogenesis.[6] }}
The adhesion GPCR BaI3 is an orphan receptor that has a long N-terminus consisting of one cub domain, five BaI Thrombospondin type 1 repeats, and one hormone binding domain.[7] BaI3 is expressed in neural tissues of the central nervous system. BaI3 has been shown to have a high affinity for C1q proteins. C1q added to hippocampal neurons expressing BaI3 resulted in a decrease in the number of synapses.
References
- GRCh38: Ensembl release 89: ENSG00000135298 - Ensembl, May 2017
- GRCm38: Ensembl release 89: ENSMUSG00000033569 - Ensembl, May 2017
- "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- Shiratsuchi T, Nishimori H, Ichise H, Nakamura Y, Tokino T (Apr 1998). "Cloning and characterization of BAI2 and BAI3, novel genes homologous to brain-specific angiogenesis inhibitor 1 (BAI1)". Cytogenet Cell Genet. 79 (1–2): 103–8. doi:10.1159/000134693. PMID 9533023.
- "Entrez Gene: BAI3 brain-specific angiogenesis inhibitor 3".
- Marc F. Bolliger, David C. Martinelli, and Thomas C. Südhof. The cell-adhesion G protein-coupled receptor BAI3 is a high-affinity receptor for C1q-like proteins. PNAS 2011 ; published ahead of print January 24, 2011, doi:10.1073/pnas.1019577108
Further reading
- Nakajima D, Okazaki N, Yamakawa H, et al. (2003). "Construction of expression-ready cDNA clones for KIAA genes: manual curation of 330 KIAA cDNA clones". DNA Res. 9 (3): 99–106. doi:10.1093/dnares/9.3.99. PMID 12168954.
- Nagase T, Ishikawa K, Miyajima N, et al. (1998). "Prediction of the coding sequences of unidentified human genes. IX. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro". DNA Res. 5 (1): 31–9. doi:10.1093/dnares/5.1.31. PMID 9628581.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Bjarnadóttir TK, Fredriksson R, Höglund PJ, et al. (2005). "The human and mouse repertoire of the adhesion family of G-protein-coupled receptors". Genomics. 84 (1): 23–33. doi:10.1016/j.ygeno.2003.12.004. PMID 15203201.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
External links
- Human ADGRB3 genome location and ADGRB3 gene details page in the UCSC Genome Browser.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.