Free fatty acid receptor 2

Free fatty acid receptor 2 (FFA2) is a G-protein coupled receptor encoded by the FFAR2 gene.[5][6][7]

FFAR2
Identifiers
AliasesFFAR2, FFA2R, GPR43, free fatty acid receptor 2
External IDsOMIM: 603823 MGI: 2441731 HomoloGene: 133911 GeneCards: FFAR2
Gene location (Human)
Chr.Chromosome 19 (human)[1]
Band19q13.12Start35,443,907 bp[1]
End35,451,767 bp[1]
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

2867

233079

Ensembl

ENSG00000126262

ENSMUSG00000051314

UniProt

O15552

Q8VCK6

RefSeq (mRNA)

NM_005306
NM_001370087

NM_001168509
NM_001168510
NM_001168511
NM_001168512
NM_146187

RefSeq (protein)

NP_005297
NP_001357016

NP_001161981
NP_001161982
NP_001161983
NP_001161984
NP_666299

Location (UCSC)Chr 19: 35.44 – 35.45 MbChr 7: 30.82 – 30.82 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Expression

FFAR2 mRNA is expressed in adipose tissue, pancreas, spleen, lymph nodes, bone marrow, and peripheral blood mononuclear cells.[8][9] FFAR2 transcription is regulated by the XBP1 transcription factor which binds to the core promoter.[10]

Function

Mouse studies utilizing Ffar2 gene deletions have implicated the receptor in the regulation of energy metabolism and immune responses.[11] Short Chain Fatty Acids (SCFA's) generated in the processing of fiber by intestinal microbiota act as ligands for the receptor and can affect neutrophil chemotaxis.[12][13] However, discrepancies between the pathways activated by FFAR2 agonists in human cells and the equivalent murine counterparts have been observed.[14][15][16]

Heteromerization

FFA2 may interact with FFAR3 to form a FFAR2-FFAR3 receptor heteromer with signalling that is distinct from the parent homomers.[17]

See also

References

  1. GRCh38: Ensembl release 89: ENSG00000126262 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000051314 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Stoddart LA, Smith NJ, Milligan G (December 2008). "International Union of Pharmacology. LXXI. Free fatty acid receptors FFA1, -2, and -3: pharmacology and pathophysiological functions". Pharmacological Reviews. 60 (4): 405–17. doi:10.1124/pr.108.00802. PMID 19047536. S2CID 10327972.
  6. "FFA2 receptor | Free fatty acid receptors". IUPHAR/BPS Guide to PHARMACOLOGY. Retrieved 2020-08-29.
  7. "Entrez Gene: FFAR2 free fatty acid receptor 2".
  8. Nilsson NE, Kotarsky K, Owman C, Olde B (April 2003). "Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids". Biochemical and Biophysical Research Communications. 303 (4): 1047–52. doi:10.1016/S0006-291X(03)00488-1. PMID 12684041.
  9. Le Poul E, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, et al. (July 2003). "Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation". The Journal of Biological Chemistry. 278 (28): 25481–9. doi:10.1074/jbc.M301403200. PMID 12711604.
  10. Ang Z, Er JZ, Ding JL (January 2015). "The short-chain fatty acid receptor GPR43 is transcriptionally regulated by XBP1 in human monocytes". Scientific Reports. 5: 8134. doi:10.1038/srep08134. PMC 4311239. PMID 25633224.
  11. Bindels LB, Dewulf EM, Delzenne NM (April 2013). "GPR43/FFA2: physiopathological relevance and therapeutic prospects". Trends in Pharmacological Sciences. 34 (4): 226–32. doi:10.1016/j.tips.2013.02.002. PMID 23489932.
  12. Yang G, Chen S, Deng B, Tan C, Deng J, Zhu G, et al. (2018). "Implication of G Protein-Coupled Receptor 43 in Intestinal Inflammation: A Mini-Review". Frontiers in Immunology. 9: 1434. doi:10.3389/fimmu.2018.01434. PMC 6023978. PMID 29988393.
  13. D'Souza WN, Douangpanya J, Mu S, Jaeckel P, Zhang M, Maxwell JR, et al. (2017-07-20). "Differing roles for short chain fatty acids and GPR43 agonism in the regulation of intestinal barrier function and immune responses". PLOS ONE. 12 (7): e0180190. doi:10.1371/journal.pone.0180190. PMC 5519041. PMID 28727837.
  14. Dewulf EM, Ge Q, Bindels LB, Sohet FM, Cani PD, Brichard SM, Delzenne NM (January 2013). "Evaluation of the relationship between GPR43 and adiposity in human". Nutrition & Metabolism. 10 (1): 11. doi:10.1186/1743-7075-10-11. PMC 3577645. PMID 23327542.
  15. Priyadarshini M, Villa SR, Fuller M, Wicksteed B, Mackay CR, Alquier T, et al. (July 2015). "An Acetate-Specific GPCR, FFAR2, Regulates Insulin Secretion". Molecular Endocrinology. 29 (7): 1055–66. doi:10.1210/me.2015-1007. PMC 4484778. PMID 26075576.
  16. Ang Z, Er JZ, Tan NS, Lu J, Liou YC, Grosse J, Ding JL (September 2016). "Human and mouse monocytes display distinct signalling and cytokine profiles upon stimulation with FFAR2/FFAR3 short-chain fatty acid receptor agonists". Scientific Reports. 6: 34145. doi:10.1038/srep34145. PMC 5036191. PMID 27667443.
  17. Ang Z, Xiong D, Wu M, Ding JL (January 2018). "FFAR2-FFAR3 receptor heteromerization modulates short-chain fatty acid sensing". FASEB Journal. 32 (1): 289–303. doi:10.1096/fj.201700252RR. PMC 5731126. PMID 28883043.

Further reading


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.